Essential Tensor Learning for Multi-View Spectral Clustering

Recently, multi-view clustering attracts much attention, which aims to take advantage of multi-view information to improve the performance of clustering. However, most recent work mainly focuses on the self-representation-based subspace clustering, which is of high computation complexity. In this pa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 12 vom: 17. Dez., Seite 5910-5922
1. Verfasser: Wu, Jianlong (VerfasserIn)
Weitere Verfasser: Lin, Zhouchen, Zha, Hongbin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298332833
003 DE-627
005 20231225093928.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2916740  |2 doi 
028 5 2 |a pubmed24n0994.xml 
035 |a (DE-627)NLM298332833 
035 |a (NLM)31217104 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Jianlong  |e verfasserin  |4 aut 
245 1 0 |a Essential Tensor Learning for Multi-View Spectral Clustering 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 06.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Recently, multi-view clustering attracts much attention, which aims to take advantage of multi-view information to improve the performance of clustering. However, most recent work mainly focuses on the self-representation-based subspace clustering, which is of high computation complexity. In this paper, we focus on the Markov chain-based spectral clustering method and propose a novel essential tensor learning method to explore the high-order correlations for multi-view representation. We first construct a tensor based on multi-view transition probability matrices of the Markov chain. By incorporating the idea from the robust principle component analysis, tensor singular value decomposition (t-SVD)-based tensor nuclear norm is imposed to preserve the low-rank property of the essential tensor, which can well capture the principle information from multiple views. We also employ the tensor rotation operator for this task to better investigate the relationship among views as well as reduce the computation complexity. The proposed method can be efficiently optimized by the alternating direction method of multipliers (ADMM). Extensive experiments on seven real-world datasets corresponding to five different applications show that our method achieves superior performance over other state-of-the-art methods 
650 4 |a Journal Article 
700 1 |a Lin, Zhouchen  |e verfasserin  |4 aut 
700 1 |a Zha, Hongbin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 12 vom: 17. Dez., Seite 5910-5922  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:12  |g day:17  |g month:12  |g pages:5910-5922 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2916740  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 12  |b 17  |c 12  |h 5910-5922