RotationNet for Joint Object Categorization and Unsupervised Pose Estimation from Multi-View Images

We propose a Convolutional Neural Network (CNN)-based model "RotationNet," which takes multi-view images of an object as input and jointly estimates its pose and object category. Unlike previous approaches that use known viewpoint labels for training, our method treats the viewpoint labels...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 43(2021), 1 vom: 20. Jan., Seite 269-283
1. Verfasser: Kanezaki, Asako (VerfasserIn)
Weitere Verfasser: Matsushita, Yasuyuki, Nishida, Yoshifumi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2021
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM298332728
003 DE-627
005 20231225093928.0
007 cr uuu---uuuuu
008 231225s2021 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2922640  |2 doi 
028 5 2 |a pubmed24n0994.xml 
035 |a (DE-627)NLM298332728 
035 |a (NLM)31217093 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kanezaki, Asako  |e verfasserin  |4 aut 
245 1 0 |a RotationNet for Joint Object Categorization and Unsupervised Pose Estimation from Multi-View Images 
264 1 |c 2021 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 07.12.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose a Convolutional Neural Network (CNN)-based model "RotationNet," which takes multi-view images of an object as input and jointly estimates its pose and object category. Unlike previous approaches that use known viewpoint labels for training, our method treats the viewpoint labels as latent variables, which are learned in an unsupervised manner during the training using an unaligned object dataset. RotationNet uses only a partial set of multi-view images for inference, and this property makes it useful in practical scenarios where only partial views are available. Moreover, our pose alignment strategy enables one to obtain view-specific feature representations shared across classes, which is important to maintain high accuracy in both object categorization and pose estimation. Effectiveness of RotationNet is demonstrated by its superior performance to the state-of-the-art methods of 3D object classification on 10- and 40-class ModelNet datasets. We also show that RotationNet, even trained without known poses, achieves comparable performance to the state-of-the-art methods on an object pose estimation dataset. Furthermore, our object ranking method based on classification by RotationNet achieved the first prize in two tracks of the 3D Shape Retrieval Contest (SHREC) 2017. Finally, we demonstrate the performance of real-world applications of RotationNet trained with our newly created multi-view image dataset using a moving USB camera 
650 4 |a Journal Article 
700 1 |a Matsushita, Yasuyuki  |e verfasserin  |4 aut 
700 1 |a Nishida, Yoshifumi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 43(2021), 1 vom: 20. Jan., Seite 269-283  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:43  |g year:2021  |g number:1  |g day:20  |g month:01  |g pages:269-283 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2922640  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 43  |j 2021  |e 1  |b 20  |c 01  |h 269-283