Pathogenic gene variants and clinical phenotype features of 26 children with progressive myoclonic epilepsy

Objective: To identify the pathogenic gene variants and clinical phenotype features of 26 children with progressive myoclonic epilepsy (PME). Methods: In this cross-sectional study, 26 PME children (11 boys and 15 girls) sent to neurological outpatient clinics and admitted to wards of the Department...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Zhonghua er ke za zhi = Chinese journal of pediatrics. - 1960. - 57(2019), 6 vom: 02. Juni, Seite 458-464
1. Verfasser: Zhang, J (VerfasserIn)
Weitere Verfasser: Zhang, Y H, Chen, J Y, Ji, T Y, Yang, Z X, Yang, X L, Sun, W, Zhang, L P, Wu, X R
Format: Online-Aufsatz
Sprache:Chinese
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Zhonghua er ke za zhi = Chinese journal of pediatrics
Schlagworte:Journal Article Genes Myoclonic epilepsies, progressive Myoclonus Carrier Proteins GTPase-Activating Proteins KCNC1 protein, human KCTD7 protein, human Membrane Proteins Nerve Tissue Proteins mehr... Potassium Channels Shaw Potassium Channels TBC1D24 protein, human Tripeptidyl-Peptidase 1 TPP1 protein, human EC 3.4.14.9
LEADER 01000caa a22002652 4500
001 NLM29832993X
003 DE-627
005 20250225121256.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||chi c
024 7 |a 10.3760/cma.j.issn.0578-1310.2019.06.011  |2 doi 
028 5 2 |a pubmed25n0994.xml 
035 |a (DE-627)NLM29832993X 
035 |a (NLM)31216804 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a chi 
100 1 |a Zhang, J  |e verfasserin  |4 aut 
245 1 0 |a Pathogenic gene variants and clinical phenotype features of 26 children with progressive myoclonic epilepsy 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.08.2019 
500 |a Date Revised 18.10.2022 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a Objective: To identify the pathogenic gene variants and clinical phenotype features of 26 children with progressive myoclonic epilepsy (PME). Methods: In this cross-sectional study, 26 PME children (11 boys and 15 girls) sent to neurological outpatient clinics and admitted to wards of the Department of Pediatrics, Peking University First Hospital were enrolled prospectively from January 2014 to October 2018. The pathogenic gene variants of PME children and their parents were identified by Sanger sequencing, next generation sequencing panels of epilepsy or trio-based whole exome sequencing and so on. The genotypes and phenotypes of the PME children were anaylzed. Results: The clinical features of 26 children include myoclonus, multiple types of seizures and progressive neurological regression. Their onset ages ranged from 3 months to 15 years. Several pathogenic gene variants were identified in the 15 patients, including TPP1 gene variantions in 3 patients; NEU1, GBA, TBC1D24 and KCNC1 gene variantions in 2 patients respectively; CLN6, MFSD8, ASAH1 and ATN1 gene variantions in 1 patient respectively. Several variants of uncertain significance were identified in 4 patients, including GOSR2 gene compound heterozygous variants in 2 patients, KCTD7 gene compound heterozygous variants in 1 patient, and compound heterozygous variants of an unreported TARS gene in 1 patient. No pathogenic gene variant was identified in 7 patients. In 15 children with the identified pathogenic gene variants, 5 patients were diagnosed with neuronal ceroid lipofuscinoses (NCL), 2 patients with sialidosis, 2 patients with neuronopathic Gaucher disease, 1 patient with dentatorubral-pallidoluysian atrophy (DRPLA), and 1 patient with spinal muscular atrophy-progressive myoclonic epilepsy (SMA-PME). Conclusions: PME include a group of diseases with genetic heterogeneity. Identification of the pathogenic gene variants of PME could help to predict the prognosis and guide the genetic counseling 
650 4 |a Journal Article 
650 4 |a Genes 
650 4 |a Myoclonic epilepsies, progressive 
650 4 |a Myoclonus 
650 7 |a Carrier Proteins  |2 NLM 
650 7 |a GTPase-Activating Proteins  |2 NLM 
650 7 |a KCNC1 protein, human  |2 NLM 
650 7 |a KCTD7 protein, human  |2 NLM 
650 7 |a Membrane Proteins  |2 NLM 
650 7 |a Nerve Tissue Proteins  |2 NLM 
650 7 |a Potassium Channels  |2 NLM 
650 7 |a Shaw Potassium Channels  |2 NLM 
650 7 |a TBC1D24 protein, human  |2 NLM 
650 7 |a Tripeptidyl-Peptidase 1  |2 NLM 
650 7 |a TPP1 protein, human  |2 NLM 
650 7 |a EC 3.4.14.9  |2 NLM 
700 1 |a Zhang, Y H  |e verfasserin  |4 aut 
700 1 |a Chen, J Y  |e verfasserin  |4 aut 
700 1 |a Ji, T Y  |e verfasserin  |4 aut 
700 1 |a Yang, Z X  |e verfasserin  |4 aut 
700 1 |a Yang, X L  |e verfasserin  |4 aut 
700 1 |a Sun, W  |e verfasserin  |4 aut 
700 1 |a Zhang, L P  |e verfasserin  |4 aut 
700 1 |a Wu, X R  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Zhonghua er ke za zhi = Chinese journal of pediatrics  |d 1960  |g 57(2019), 6 vom: 02. Juni, Seite 458-464  |w (DE-627)NLM136249191  |x 0578-1310  |7 nnns 
773 1 8 |g volume:57  |g year:2019  |g number:6  |g day:02  |g month:06  |g pages:458-464 
856 4 0 |u http://dx.doi.org/10.3760/cma.j.issn.0578-1310.2019.06.011  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_20 
912 |a GBV_ILN_22 
912 |a GBV_ILN_24 
912 |a GBV_ILN_31 
912 |a GBV_ILN_39 
912 |a GBV_ILN_40 
912 |a GBV_ILN_50 
912 |a GBV_ILN_61 
912 |a GBV_ILN_65 
912 |a GBV_ILN_69 
912 |a GBV_ILN_70 
912 |a GBV_ILN_72 
912 |a GBV_ILN_120 
912 |a GBV_ILN_130 
912 |a GBV_ILN_227 
912 |a GBV_ILN_244 
912 |a GBV_ILN_285 
912 |a GBV_ILN_294 
912 |a GBV_ILN_350 
912 |a GBV_ILN_665 
912 |a GBV_ILN_813 
951 |a AR 
952 |d 57  |j 2019  |e 6  |b 02  |c 06  |h 458-464