|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM298262487 |
003 |
DE-627 |
005 |
20231225093758.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1111/nph.15989
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0994.xml
|
035 |
|
|
|a (DE-627)NLM298262487
|
035 |
|
|
|a (NLM)31209880
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Saijo, Yusuke
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Plant immunity in signal integration between biotic and abiotic stress responses
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 14.12.2020
|
500 |
|
|
|a Date Revised 14.12.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
|
520 |
|
|
|a Plants constantly monitor and cope with the fluctuating environment while hosting a diversity of plant-inhabiting microbes. The mode and outcome of plant-microbe interactions, including plant disease epidemics, are dynamically and profoundly influenced by abiotic factors, such as light, temperature, water and nutrients. Plants also utilize associations with beneficial microbes during adaptation to adverse conditions. Elucidation of the molecular bases for the plant-microbe-environment interactions is therefore of fundamental importance in the plant sciences. Following advances into individual stress signaling pathways, recent studies are beginning to reveal molecular intersections between biotic and abiotic stress responses and regulatory principles in combined stress responses. We outline mechanisms underlying environmental modulation of plant immunity and emerging roles for immune regulators in abiotic stress tolerance. Furthermore, we discuss how plants coordinate conflicting demands when exposed to combinations of different stresses, with attention to a possible determinant that links initial stress response to broad-spectrum stress tolerance or prioritization of specific stress tolerance
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a DAMPs
|
650 |
|
4 |
|a abiotic and biotic stress
|
650 |
|
4 |
|a plant immunity
|
650 |
|
4 |
|a plant-microbe-environment interactions
|
650 |
|
4 |
|a signal integration
|
650 |
|
4 |
|a stress adaptation
|
650 |
|
4 |
|a stress tolerance
|
650 |
|
4 |
|a tradeoff
|
700 |
1 |
|
|a Loo, Eliza Po-Iian
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t The New phytologist
|d 1979
|g 225(2020), 1 vom: 15. Jan., Seite 87-104
|w (DE-627)NLM09818248X
|x 1469-8137
|7 nnns
|
773 |
1 |
8 |
|g volume:225
|g year:2020
|g number:1
|g day:15
|g month:01
|g pages:87-104
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1111/nph.15989
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 225
|j 2020
|e 1
|b 15
|c 01
|h 87-104
|