Recent Advances in Fiber Supercapacitors : Materials, Device Configurations, and Applications

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 32(2020), 5 vom: 09. Feb., Seite e1901806
1. Verfasser: Chen, Di (VerfasserIn)
Weitere Verfasser: Jiang, Kai, Huang, Tingting, Shen, Guozhen
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article Review fiber supercapacitors flexible electronics nanomaterials
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Fiber supercapacitors (SCs), with their small size and weight, excellent flexibility and deformability, and high capacitance and power density, are recognized as one of the most robust power supplies available for wearable electronics. They can be woven into breathable textiles or integrated into different functional materials to fit curved surfaces for use in day-to-day life. A comprehensive review on recent important development and progress in fiber SCs is provided, with respect to the active electrode materials, device configurations, functions, integrations. Active electrode materials based on different electrochemical mechanisms and intended to improve performance including carbon-based materials, metal oxides, and hybrid composites, are first summarized. The three main types of fiber SCs, namely parallel, twist, and coaxial structures, are then discussed, followed by the exploration of some functions including stretchability and self-healing. Miniaturized integration of fiber SCs to obtain flexible energy fibers and integrated sensing systems is also discussed. Finally, a short conclusion is made, combining with comments on the current challenges and potential solutions in this field
Beschreibung:Date Revised 30.09.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201901806