Surface Modification of Poly(ether ether ketone) through Friedel-Crafts Reaction for High Adhesion Strength

Poly(ether ether ketone) (PEEK) possesses attractive mechanical and thermal properties but demonstrates poor adhesion. To overcome this disadvantage, in this study, the surface modification of PEEK or PEEK-based carbon-fiber-reinforced thermoplastics (CFRTP) was performed through the Friedel-Crafts...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 30 vom: 30. Juli, Seite 9761-9768
1. Verfasser: Miyagaki, Akira (VerfasserIn)
Weitere Verfasser: Kamaya, Yusuke, Matsumoto, Takuya, Honda, Koji, Shibahara, Masafumi, Hongo, Chizuru, Nishino, Takashi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Poly(ether ether ketone) (PEEK) possesses attractive mechanical and thermal properties but demonstrates poor adhesion. To overcome this disadvantage, in this study, the surface modification of PEEK or PEEK-based carbon-fiber-reinforced thermoplastics (CFRTP) was performed through the Friedel-Crafts reaction and successive epoxidation. Under optimized reaction conditions, surface modification was achieved without surface deterioration, and epoxy groups were introduced. The progress of the Friedel-Crafts reaction and epoxidation was demonstrated by X-ray photoelectron spectroscopy measurements after fluorine labeling through thiol-en reaction and amine addition, respectively. The adhesive strength between CFRTP and epoxy adhesives was increased to 23.5 MPa, and cohesive fracture of epoxy adhesives, rather than interfacial peeling, occurred. In addition, compared with conventional plasma treatment, the durability of the modified surface and thickness of the modified surface layer increased. Therefore, we succeeded in modifying the surface properties through the epoxidation of the PEEK surface
Beschreibung:Date Revised 23.09.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00641