Object Detection from Scratch with Deep Supervision

In this paper, we propose Deeply Supervised Object Detectors (DSOD), an object detection framework that can be trained from scratch. Recent advances in object detection heavily depend on the off-the-shelf models pre-trained on large-scale classification datasets like ImageNet and OpenImage. However,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 2 vom: 14. Feb., Seite 398-412
1. Verfasser: Shen, Zhiqiang (VerfasserIn)
Weitere Verfasser: Liu, Zhuang, Li, Jianguo, Jiang, Yu-Gang, Chen, Yurong, Xue, Xiangyang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't