Vocabulary-Informed Zero-Shot and Open-Set Learning

Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these cha...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 12 vom: 14. Dez., Seite 3136-3152
1. Verfasser: Fu, Yanwei (VerfasserIn)
Weitere Verfasser: Wang, Xiaomei, Dong, Hanze, Jiang, Yu-Gang, Wang, Meng, Xue, Xiangyang, Sigal, Leonid
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM29815868X
003 DE-627
005 20231225093541.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2922175  |2 doi 
028 5 2 |a pubmed24n0993.xml 
035 |a (DE-627)NLM29815868X 
035 |a (NLM)31199251 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Fu, Yanwei  |e verfasserin  |4 aut 
245 1 0 |a Vocabulary-Informed Zero-Shot and Open-Set Learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 11.02.2021 
500 |a Date Revised 11.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Despite significant progress in object categorization, in recent years, a number of important challenges remain; mainly, the ability to learn from limited labeled data and to recognize object classes within large, potentially open, set of labels. Zero-shot learning is one way of addressing these challenges, but it has only been shown to work with limited sized class vocabularies and typically requires separation between supervised and unsupervised classes, allowing former to inform the latter but not vice versa. We propose the notion of vocabulary-informed learning to alleviate the above mentioned challenges and address problems of supervised, zero-shot, generalized zero-shot and open set recognition using a unified framework. Specifically, we propose a weighted maximum margin framework for semantic manifold-based recognition that incorporates distance constraints from (both supervised and unsupervised) vocabulary atoms. Distance constraints ensure that labeled samples are projected closer to their correct prototypes, in the embedding space, than to others. We illustrate that resulting model shows improvements in supervised, zero-shot, generalized zero-shot, and large open set recognition, with up to 310K class vocabulary on Animal with Attributes and ImageNet datasets 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Xiaomei  |e verfasserin  |4 aut 
700 1 |a Dong, Hanze  |e verfasserin  |4 aut 
700 1 |a Jiang, Yu-Gang  |e verfasserin  |4 aut 
700 1 |a Wang, Meng  |e verfasserin  |4 aut 
700 1 |a Xue, Xiangyang  |e verfasserin  |4 aut 
700 1 |a Sigal, Leonid  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 12 vom: 14. Dez., Seite 3136-3152  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:12  |g day:14  |g month:12  |g pages:3136-3152 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2922175  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 12  |b 14  |c 12  |h 3136-3152