CsPbBr3 Quantum Dots 2.0 : Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Veröffentlicht in: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 30 vom: 18. Juli, Seite e1900767 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Advanced materials (Deerfield Beach, Fla.) |
Schlagworte: | Journal Article CsPbBr3 quantum dots benzenesulfonic acid equivalent ligand high stability quantum yield |
Zusammenfassung: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. The stability and optoelectronic device performance of perovskite quantum dots (Pe-QDs) are severely limited by present ligand strategies since these ligands exhibit a highly dynamic binding state, resulting in serious complications in QD purification and storage. Here, a "Br-equivalent" ligand strategy is developed in which the proposed strong ionic sulfonate heads, for example, benzenesulfonic acid, can firmly bind to the exposed Pb ions to form a steady binding state, and can also effectively eliminate the exciton trapping probability due to bromide vacancies. From these two aspects, the sulfonate heads play a similar role as natural Br ions in a perfect perovskite lattice. Using this approach, high photoluminescence quantum yield (PL QY) > 90% is facilely achieved without the need for amine-related ligands. Furthermore, the prepared PL QYs are well maintained after eight purification cycles, more than five months of storage, and high-flux photo-irradiation. This is the first report of high and versatile stabilities of Pe-QD, which should enable their improved application in lighting, displays, and biologic imaging |
---|---|
Beschreibung: | Date Revised 30.09.2020 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201900767 |