HeteroFusion : Dense Scene Reconstruction Integrating Multi-Sensors

We present a novel approach to integrate data from multiple sensor types for dense 3D reconstruction of indoor scenes in realtime. Existing algorithms are mainly based on a single RGBD camera and thus require continuous scanning of areas with sufficient geometric features. Otherwise, tracking may fa...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on visualization and computer graphics. - 1996. - 26(2020), 11 vom: 10. Nov., Seite 3217-3230
1. Verfasser: Yang, Sheng (VerfasserIn)
Weitere Verfasser: Li, Beichen, Liu, Minghua, Lai, Yu-Kun, Kobbelt, Leif, Hu, Shi-Min
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on visualization and computer graphics
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM29768101X
003 DE-627
005 20250225100236.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TVCG.2019.2919619  |2 doi 
028 5 2 |a pubmed25n0992.xml 
035 |a (DE-627)NLM29768101X 
035 |a (NLM)31150341 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Sheng  |e verfasserin  |4 aut 
245 1 0 |a HeteroFusion  |b Dense Scene Reconstruction Integrating Multi-Sensors 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a novel approach to integrate data from multiple sensor types for dense 3D reconstruction of indoor scenes in realtime. Existing algorithms are mainly based on a single RGBD camera and thus require continuous scanning of areas with sufficient geometric features. Otherwise, tracking may fail due to unreliable frame registration. Inspired by the fact that the fusion of multiple sensors can combine their strengths towards a more robust and accurate self-localization, we incorporate multiple types of sensors which are prevalent in modern robot systems, including a 2D range sensor, an inertial measurement unit (IMU), and wheel encoders. We fuse their measurements to reinforce the tracking process and to eventually obtain better 3D reconstructions. Specifically, we develop a 2D truncated signed distance field (TSDF) volume representation for the integration and ray-casting of laser frames, leading to a unified cost function in the pose estimation stage. For validation of the estimated poses in the loop-closure optimization process, we train a classifier for the features extracted from heterogeneous sensors during the registration progress. To evaluate our method on challenging use case scenarios, we assembled a scanning platform prototype to acquire real-world scans. We further simulated synthetic scans based on high-fidelity synthetic scenes for quantitative evaluation. Extensive experimental evaluation on these two types of scans demonstrate that our system is capable of robustly acquiring dense 3D reconstructions and outperforms state-of-the-art RGBD and LiDAR systems 
650 4 |a Journal Article 
700 1 |a Li, Beichen  |e verfasserin  |4 aut 
700 1 |a Liu, Minghua  |e verfasserin  |4 aut 
700 1 |a Lai, Yu-Kun  |e verfasserin  |4 aut 
700 1 |a Kobbelt, Leif  |e verfasserin  |4 aut 
700 1 |a Hu, Shi-Min  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on visualization and computer graphics  |d 1996  |g 26(2020), 11 vom: 10. Nov., Seite 3217-3230  |w (DE-627)NLM098269445  |x 1941-0506  |7 nnas 
773 1 8 |g volume:26  |g year:2020  |g number:11  |g day:10  |g month:11  |g pages:3217-3230 
856 4 0 |u http://dx.doi.org/10.1109/TVCG.2019.2919619  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 26  |j 2020  |e 11  |b 10  |c 11  |h 3217-3230