The Role of the OH Group in Citric Acid in the Coordination with Fe3O4 Nanoparticles

The role of the C?OH group in citric acid (CA) in the molecular coordination with Fe3O4 nanoparticles (NPs) has been elusive for a long time. In this study, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectral deconvolution and thermogravimetric analysis (TGA) have been used to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 25 vom: 25. Juni, Seite 8325-8332
1. Verfasser: Zhang, Xiaorui (VerfasserIn)
Weitere Verfasser: Chen, Lan, Liu, Renxiao, Li, Dexing, Ge, Xiujie, Ge, Guanglu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:The role of the C?OH group in citric acid (CA) in the molecular coordination with Fe3O4 nanoparticles (NPs) has been elusive for a long time. In this study, attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectral deconvolution and thermogravimetric analysis (TGA) have been used to quantitatively clarify its significance in CA adsorption and its corresponding conformation. The experimental results show that the coordination and the corresponding conformation are exclusively determined by COOH not C?OH at pH 3, where its adsorption behavior conforms to the Brunauer?Emmett?Teller (BET) multilayer model with a maximal monolayer coordination number of 2.1/nm2. However, C?OH is involved in the coordination at pH 10, and CA conforms to the Langmuir monolayer model with 1.4/nm2 as its maximal monolayer coordination number, which is more stable than the COOH-only coordination. Especially, the conformational transformation is observed for the first time at pH 3, where the CA molecules adjust their conformation upon elution to maximize the utilization of the available binding sites on Fe3O4 NPs. This finding deepens the understanding on the fundamental mechanism for the interaction between the C?OH and COOH groups containing the organic ligand and metal oxide
Beschreibung:Date Revised 23.07.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00208