PDMS-Infused Poly(High Internal Phase Emulsion) Templates for the Construction of Slippery Liquid-Infused Porous Surfaces with Self-cleaning and Self-repairing Properties

Advanced liquid-repelling materials that resist both water-based and oil-based contaminants have significant applications in many fields. Herein, a novel protocol for the fabrication of a robust poly(high internal phase emulsion) (polyHIPE)-based slippery liquid-infused porous surface (SLIPS) system...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 25 vom: 25. Juni, Seite 8276-8284
1. Verfasser: Zhang, Dong (VerfasserIn)
Weitere Verfasser: Xia, Yuzheng, Chen, Xiaonong, Shi, Shuxian, Lei, Lei
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Advanced liquid-repelling materials that resist both water-based and oil-based contaminants have significant applications in many fields. Herein, a novel protocol for the fabrication of a robust poly(high internal phase emulsion) (polyHIPE)-based slippery liquid-infused porous surface (SLIPS) system with combined self-repairing and self-cleaning properties is developed. Specifically, polystyrene-based polyHIPE (PS-HIPE) membranes with an interconnected porous structure were prepared from polymerization of the continuous oil phase in the water-in-oil HIPE templates. These polyHIPE membranes were used, for the first time, as porous substrates for loading low surface tension silicone oils as lubricating liquids for the fabrication of polyHIPE-based SLIPS membranes. These polyHIPE-based SLIPS membranes could easily repel both water- and oil-based contaminants (e.g., ink, milk, and coffee) with very low sliding angles (3.0 ? 1.3?) and could even repel solid contaminants (e.g., dust) upon washing with water. Meanwhile, such membranes exhibit excellent self-repairing properties so that physical scratching damage, such as cutting a trench, does not affect the liquid-repelling performance. The liquid-repelling ability could be recovered completely within 10 s. More significantly, such a SLIPS membrane shows excellent durability so that the water sliding angle of the SLIPS could be maintained at less than 5.0? for about 80 cycles owing to the regenerated poly(dimethylsiloxane) layer on the surface. This work represents a robust methodology to enrich the development of hydrophobic and oleophobic slippery surfaces, which is promising for many areas, such as biomedical, self-cleaning, antifouling, and self-repairing materials
Beschreibung:Date Revised 23.07.2019
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b01115