Evolution and functional differentiation of recently diverged phytochelatin synthase genes from Arundo donax L

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.

Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany. - 1985. - 70(2019), 19 vom: 15. Okt., Seite 5391-5405
1. Verfasser: Li, Mingai (VerfasserIn)
Weitere Verfasser: Stragliati, Luca, Bellini, Erika, Ricci, Ada, Saba, Alessandro, Sanità di Toppi, Luigi, Varotto, Claudio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of experimental botany
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Cadmium divergence gene duplication giant reed phytochelatin synthase phytochelatins subfunctionalization Plant Proteins mehr... Aminoacyltransferases EC 2.3.2.- glutathione gamma-glutamylcysteinyltransferase EC 2.3.2.15
Beschreibung
Zusammenfassung:© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Phytochelatin synthases (PCSs) play pivotal roles in the detoxification of heavy metals and metalloids in plants; however, little information on the evolution of recently duplicated PCS genes in plant species is available. Here we characterize the evolution and functional differentiation of three PCS genes from the giant reed (Arundo donax L.), a biomass/bioenergy crop with remarkable resistance to cadmium and other heavy metals. Phylogenetic reconstruction with PCS genes from fully sequenced monocotyledonous genomes indicated that the three A. donax PCSs, namely AdPCS1-3, form a monophyletic clade. The AdPCS1-3 genes were expressed at low levels in many A. donax organs and displayed different levels of cadmium-responsive expression in roots. Overexpression of AdPCS1-3 in Arabidopsis thaliana and yeast reproduced the phenotype of functional PCS genes. Mass spectrometry analyses confirmed that AdPCS1-3 are all functional enzymes, but with significant differences in the amount of the phytochelatins synthesized. Moreover, heterogeneous evolutionary rates characterized the AdPCS1-3 genes, indicative of relaxed natural selection. These results highlight the elevated functional differentiation of A. donax PCS genes from both a transcriptional and an enzymatic point of view, providing evidence of the high evolvability of PCS genes and of plant responsiveness to heavy metal stress
Beschreibung:Date Completed 10.08.2020
Date Revised 10.08.2020
published: Print
Citation Status MEDLINE
ISSN:1460-2431
DOI:10.1093/jxb/erz266