A Functional Representation for Graph Matching

Graph matching is an important and persistent problem in computer vision and pattern recognition for finding node-to-node correspondence between graphs. However, graph matching that incorporates pairwise constraints can be formulated as a quadratic assignment problem (QAP), which is NP-complete and...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 11 vom: 30. Nov., Seite 2737-2754
1. Verfasser: Wang, Fu-Dong (VerfasserIn)
Weitere Verfasser: Xue, Nan, Zhang, Yipeng, Xia, Gui-Song, Pelillo, Marcello
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM29762475X
003 DE-627
005 20231225092409.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2919308  |2 doi 
028 5 2 |a pubmed24n0992.xml 
035 |a (DE-627)NLM29762475X 
035 |a (NLM)31144627 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Fu-Dong  |e verfasserin  |4 aut 
245 1 2 |a A Functional Representation for Graph Matching 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Graph matching is an important and persistent problem in computer vision and pattern recognition for finding node-to-node correspondence between graphs. However, graph matching that incorporates pairwise constraints can be formulated as a quadratic assignment problem (QAP), which is NP-complete and results in intrinsic computational difficulties. This paper presents a functional representation for graph matching (FRGM) that aims to provide more geometric insights on the problem and reduce the space and time complexities. To achieve these goals, we represent each graph by a linear function space equipped with a functional such as inner product or metric, that has an explicit geometric meaning. Consequently, the correspondence matrix between graphs can be represented as a linear representation map. Furthermore, this map can be reformulated as a new parameterization for matching graphs in Euclidean space such that it is consistent with graphs under rigid or nonrigid deformations. This allows us to estimate the correspondence matrix and geometric deformations simultaneously. We use the representation of edge-attributes rather than the affinity matrix to reduce the space complexity and propose an efficient optimization strategy to reduce the time complexity. The experimental results on both synthetic and real-world datasets show that the FRGM can achieve state-of-the-art performance 
650 4 |a Journal Article 
700 1 |a Xue, Nan  |e verfasserin  |4 aut 
700 1 |a Zhang, Yipeng  |e verfasserin  |4 aut 
700 1 |a Xia, Gui-Song  |e verfasserin  |4 aut 
700 1 |a Pelillo, Marcello  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 11 vom: 30. Nov., Seite 2737-2754  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:11  |g day:30  |g month:11  |g pages:2737-2754 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2919308  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 11  |b 30  |c 11  |h 2737-2754