On the geometry dependence of tuned-range separated hybrid functionals

© 2019 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 40(2019), 25 vom: 30. Sept., Seite 2191-2199
1. Verfasser: Eng, Julien (VerfasserIn)
Weitere Verfasser: Laidlaw, Beth A, Penfold, Thomas J
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article charge transfer states optimal tuning thermally activated delayed fluorescence time-dependent density functional theory triplet tuning
LEADER 01000naa a22002652 4500
001 NLM297581104
003 DE-627
005 20231225092310.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.25868  |2 doi 
028 5 2 |a pubmed24n0991.xml 
035 |a (DE-627)NLM297581104 
035 |a (NLM)31140200 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Eng, Julien  |e verfasserin  |4 aut 
245 1 0 |a On the geometry dependence of tuned-range separated hybrid functionals 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 23.09.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 Wiley Periodicals, Inc. 
520 |a Molecules and materials that absorb and/or emit light form a central part of our daily lives. Consequently, a description of their excited-state properties plays a crucial role in designing new molecules and materials with enhanced properties. Due to its favorable balance between high computational efficiency and accuracy, time-dependent density functional theory (TDDFT) is often a method of choice for characterizing these properties. However, within standard approximations to the exchange-correlation functional, it remains challenging to achieve a balanced description of all excited states, especially for those exhibiting charge-transfer (CT) characteristics. In this work, we have applied two approaches, namely, the optimal tuning and triplet tuning methods, for a nonempirical definition of range-separated functionals to improve the description of excited states within TDDFT. This is applied to study the CT properties of two thermally activated delayed fluorescence emitters, namely, PTZ-DBTO2 and TAT-3DBTO2 . We demonstrate the connection between the two methods, the performance of each in the presence on multiple excited states of different characters and the geometry dependence of each method especially relevant in the context of developing size-consistent potential energy surfaces. © 2019 Wiley Periodicals, Inc 
650 4 |a Journal Article 
650 4 |a charge transfer states 
650 4 |a optimal tuning 
650 4 |a thermally activated delayed fluorescence 
650 4 |a time-dependent density functional theory 
650 4 |a triplet tuning 
700 1 |a Laidlaw, Beth A  |e verfasserin  |4 aut 
700 1 |a Penfold, Thomas J  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 40(2019), 25 vom: 30. Sept., Seite 2191-2199  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:40  |g year:2019  |g number:25  |g day:30  |g month:09  |g pages:2191-2199 
856 4 0 |u http://dx.doi.org/10.1002/jcc.25868  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 40  |j 2019  |e 25  |b 30  |c 09  |h 2191-2199