|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM297387499 |
003 |
DE-627 |
005 |
20250225090539.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1093/jxb/erz188
|2 doi
|
028 |
5 |
2 |
|a pubmed25n0991.xml
|
035 |
|
|
|a (DE-627)NLM297387499
|
035 |
|
|
|a (NLM)31120525
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Pavlovič, Andrej
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Jasmonate signalling in carnivorous plants
|b copycat of plant defence mechanisms
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 22.06.2020
|
500 |
|
|
|a Date Revised 22.06.2020
|
500 |
|
|
|a published: Print
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
|
520 |
|
|
|a The lipid-derived jasmonate phytohormones (JAs) regulate a wide spectrum of physiological processes in plants such as growth, development, tolerance to abiotic stresses, and defence against pathogen infection and insect attack. Recently, a new role for JAs has been revealed in carnivorous plants. In these specialized plants, JAs can induce the formation of digestive cavities and regulate enzyme production in response to different stimuli from caught prey. Appearing to be a new function for JAs in plants, a closer look reveals that the signalling pathways involved resemble known signalling pathways from plant defence mechanisms. Moreover, the digestion-related secretome of carnivorous plants is composed of many pathogenesis-related (PR) proteins and low molecular weight compounds, indicating that the plant carnivory syndrome is related to and has evolved from plant defence mechanisms. This review describes the similarities between defence and carnivory. It further describes how, after recognition of caught insects, JAs enable the carnivorous plants to digest and benefit from the prey. In addition, a causal connection between electrical and jasmonate signalling is discussed
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Review
|
650 |
|
4 |
|a Dionaea (Venus flytrap)
|
650 |
|
4 |
|a Drosera (sundew)
|
650 |
|
4 |
|a Nepenthes (pitcher plant)
|
650 |
|
4 |
|a Digestive enzymes
|
650 |
|
4 |
|a electrical signals
|
650 |
|
4 |
|a jasmonic acid
|
650 |
|
4 |
|a plant carnivory
|
650 |
|
7 |
|a Cyclopentanes
|2 NLM
|
650 |
|
7 |
|a Oxylipins
|2 NLM
|
650 |
|
7 |
|a Plant Growth Regulators
|2 NLM
|
650 |
|
7 |
|a jasmonic acid
|2 NLM
|
650 |
|
7 |
|a 6RI5N05OWW
|2 NLM
|
700 |
1 |
|
|a Mithöfer, Axel
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Journal of experimental botany
|d 1985
|g 70(2019), 13 vom: 05. Juli, Seite 3379-3389
|w (DE-627)NLM098182706
|x 1460-2431
|7 nnns
|
773 |
1 |
8 |
|g volume:70
|g year:2019
|g number:13
|g day:05
|g month:07
|g pages:3379-3389
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1093/jxb/erz188
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 70
|j 2019
|e 13
|b 05
|c 07
|h 3379-3389
|