Salinity-induced alterations in plant growth, antioxidant enzyme activities, and lead transportation and accumulation in Suaeda salsa : implications for phytoremediation
Halophytes have been considered promising candidates for accumulating heavy metals from saline soils; however, little information has been given on plant physiological responses and heavy metal transportation and accumulation in halophytes that grow in heavy metal-polluted saline soils. This study h...
Veröffentlicht in: | Ecotoxicology (London, England). - 1992. - 28(2019), 5 vom: 22. Juli, Seite 520-527 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Ecotoxicology (London, England) |
Schlagworte: | Journal Article Ecotoxicity Halophytes Heavy metals Salinity Soil remediation Antioxidants Soil Pollutants Lead 2P299V784P mehr... |
Zusammenfassung: | Halophytes have been considered promising candidates for accumulating heavy metals from saline soils; however, little information has been given on plant physiological responses and heavy metal transportation and accumulation in halophytes that grow in heavy metal-polluted saline soils. This study hypothesized that salinity or heavy metals could induce alterations in plant growth, antioxidant enzyme activities and accumulation and transportation of heavy metals or sodium (Na) in Suaeda salsa. Pot experiments were conducted to test the above hypothesis. Lead (Pb) was selected as the representative heavy metal, and NaCl was added to simulate the Pb-polluted saline soil. The results showed that 0.5% NaCl addition alleviated the inhibition of plant growth under moderate Pb stress (35 and 100 mg kg-1 Pb levels), while the phytotoxicity on plants was magnified by 1.0% NaCl addition. NaCl weakened the oxidative stress in Pb-treated plants by increasing the activity levels of antioxidative enzymes (dismutase (SOD), peroxidase (POD) and catalase (CAT)). At all Pb levels, as the NaCl addition increased, significant increases were observed in the concentration of Na. The 100 mg kg-1 Pb induced a greater increase in Na concentrations than the 35 mg kg-1 Pb did, while the latter induced a greater increase than the 300 mg kg-1 Pb did. NaCl improved Pb translocation factor and its accumulation in Suaeda salsa under Pb stress, indicating that NaCl improves Pb uptake and translocation from roots to shoots and enhances the phytoextraction of Pb. Compared with the 0.1% NaCl treatment, the 0.5 and 1.0% NaCl treatments increased the concentrations of bioavailable Pb in the rhizosphere by 15.0-19.2 and 28.6-35.1%, respectively, indicating the contribution of salinity in producing more available Pb for plant uptake. Moderate salinity may be profitable for Pb transportation and accumulation in plants when there are positive effects on plant growth, antioxidant enzyme activities and Pb availability. These facts suggest that the halophyte Suaeda salsa may be exploited to remediate heavy metal-contaminated saline soils |
---|---|
Beschreibung: | Date Completed 29.10.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1573-3017 |
DOI: | 10.1007/s10646-019-02048-8 |