AttGAN : Facial Attribute Editing by Only Changing What You Want

Facial attribute editing aims to manipulate single or multiple attributes on a given face image, i.e., to generate a new face image with desired attributes while preserving other details. Recently, the generative adversarial net (GAN) and encoder-decoder architecture are usually incorporated to hand...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 20. Nov., Seite 5464-5478
1. Verfasser: He, Zhenliang (VerfasserIn)
Weitere Verfasser: Zuo, Wangmeng, Kan, Meina, Shan, Shiguang, Chen, Xilin
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM297261223
003 DE-627
005 20231225091616.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2916751  |2 doi 
028 5 2 |a pubmed24n0990.xml 
035 |a (DE-627)NLM297261223 
035 |a (NLM)31107649 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a He, Zhenliang  |e verfasserin  |4 aut 
245 1 0 |a AttGAN  |b Facial Attribute Editing by Only Changing What You Want 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Facial attribute editing aims to manipulate single or multiple attributes on a given face image, i.e., to generate a new face image with desired attributes while preserving other details. Recently, the generative adversarial net (GAN) and encoder-decoder architecture are usually incorporated to handle this task with promising results. Based on the encoder-decoder architecture, facial attribute editing is achieved by decoding the latent representation of a given face conditioned on the desired attributes. Some existing methods attempt to establish an attribute-independent latent representation for further attribute editing. However, such attribute-independent constraint on the latent representation is excessive because it restricts the capacity of the latent representation and may result in information loss, leading to over-smooth or distorted generation. Instead of imposing constraints on the latent representation, in this work, we propose to apply an attribute classification constraint to the generated image to just guarantee the correct change of desired attributes, i.e., to change what you want. Meanwhile, the reconstruction learning is introduced to preserve attribute-excluding details, in other words, to only change what you want. Besides, the adversarial learning is employed for visually realistic editing. These three components cooperate with each other forming an effective framework for high quality facial attribute editing, referred as AttGAN. Furthermore, the proposed method is extended for attribute style manipulation in an unsupervised manner. Experiments on two wild datasets, CelebA and LFW, show that the proposed method outperforms the state-of-the-art on realistic attribute editing with other facial details well preserved 
650 4 |a Journal Article 
700 1 |a Zuo, Wangmeng  |e verfasserin  |4 aut 
700 1 |a Kan, Meina  |e verfasserin  |4 aut 
700 1 |a Shan, Shiguang  |e verfasserin  |4 aut 
700 1 |a Chen, Xilin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 11 vom: 20. Nov., Seite 5464-5478  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:11  |g day:20  |g month:11  |g pages:5464-5478 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2916751  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 11  |b 20  |c 11  |h 5464-5478