A Work Efficient Parallel Algorithm for Exact Euclidean Distance Transform

A fully-parallelized work-time optimal algorithm is presented for computing the exact Euclidean Distance Transform (EDT) of a 2D binary image with the size of n×n . Unlike existing PRAM (Parallel Random Access Machine) and other algorithms, this algorithm is suitable for implementation on modern SIM...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 20. Nov., Seite 5322-5335
1. Verfasser: Manduhu, Manduhu (VerfasserIn)
Weitere Verfasser: Jones, Mark W
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM297261207
003 DE-627
005 20250225084131.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2916741  |2 doi 
028 5 2 |a pubmed25n0990.xml 
035 |a (DE-627)NLM297261207 
035 |a (NLM)31107647 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Manduhu, Manduhu  |e verfasserin  |4 aut 
245 1 2 |a A Work Efficient Parallel Algorithm for Exact Euclidean Distance Transform 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A fully-parallelized work-time optimal algorithm is presented for computing the exact Euclidean Distance Transform (EDT) of a 2D binary image with the size of n×n . Unlike existing PRAM (Parallel Random Access Machine) and other algorithms, this algorithm is suitable for implementation on modern SIMD (Single Instruction Multiple Data) architectures such as GPUs. As a fundamental operation of 2D EDT, 1D EDT is efficiently parallelized first. Specifically, the GPU algorithm for the 1D EDT, which uses CUDA (Compute Unified Device Architecture) binary functions, such as ballot(), ffs(), clz(), and shfl(), runs in O(log32n) time and performs O(n) work. Using the 1D EDT as a fundamental operation, the fully-parallelized work-time optimal 2D EDT algorithm is designed. This algorithm consists of three steps. Step 1 of the algorithm runs in O(log32n) time and performs O(N) ( N = n2 ) of total work on GPU. Step 2 performs O(N) of total work and has an expected time complexity of O(logn) on GPU. Step 3 runs in O(log32n) time and performs O(N) of total work on GPU. As far as we know, this algorithm is the first fully-parallelized and realized work-time optimal algorithm for GPUs. The experimental results show that this algorithm outperforms the prior state-of-the-art GPU algorithms 
650 4 |a Journal Article 
700 1 |a Jones, Mark W  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 11 vom: 20. Nov., Seite 5322-5335  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:11  |g day:20  |g month:11  |g pages:5322-5335 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2916741  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 11  |b 20  |c 11  |h 5322-5335