|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM297254057 |
003 |
DE-627 |
005 |
20231225091606.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1002/adma.201901580
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0990.xml
|
035 |
|
|
|a (DE-627)NLM297254057
|
035 |
|
|
|a (NLM)31106912
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Bu, Yazhong
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Tetra-PEG Based Hydrogel Sealants for In Vivo Visceral Hemostasis
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 23.12.2019
|
500 |
|
|
|a Date Revised 30.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
|
520 |
|
|
|a Medical sealant devices for in vivo hemostasis are far from satisfactory in the aged society. A major challenge is effective integration of quick hemorrhage control of the increased anticoagulated patients, high safety, and facile accessibility. Here, a well-defined ammonolysis-based Tetra-PEG hydrogel sealant is developed with rapid gelation speed, strong tissue adhesion, and high mechanical strength. Introduction of cyclized succinyl ester groups into a hydrogel matrix endows the sealant with fast degradable and controllably dissolvable properties. The hydrogel possesses outstanding hemostatic capabilities even under the anticoagulated conditions while displaying excellent biocompatibility and feasibility. These results reveal that the optimized hydrogel may be a facile, effective, and safe sealant for hemorrhage control in vivo
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Tetra-PEG hydrogels
|
650 |
|
4 |
|a controllable dissolution
|
650 |
|
4 |
|a fast degradation
|
650 |
|
4 |
|a sealants
|
650 |
|
4 |
|a visceral hemostasis
|
650 |
|
7 |
|a Amines
|2 NLM
|
650 |
|
7 |
|a Biocompatible Materials
|2 NLM
|
650 |
|
7 |
|a Hydrogels
|2 NLM
|
650 |
|
7 |
|a Polyethylene Glycols
|2 NLM
|
650 |
|
7 |
|a 3WJQ0SDW1A
|2 NLM
|
700 |
1 |
|
|a Zhang, Licheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Guofei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sun, Feifei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Liu, Jianheng
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Yang, Fei
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Tang, Peifu
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Wu, Decheng
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Advanced materials (Deerfield Beach, Fla.)
|d 1998
|g 31(2019), 28 vom: 20. Juli, Seite e1901580
|w (DE-627)NLM098206397
|x 1521-4095
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2019
|g number:28
|g day:20
|g month:07
|g pages:e1901580
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1002/adma.201901580
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2019
|e 28
|b 20
|c 07
|h e1901580
|