Phi thickenings in roots : novel secondary wall structures responsive to biotic and abiotic stresses
© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.
Veröffentlicht in: | Journal of experimental botany. - 1985. - 70(2019), 18 vom: 24. Sept., Seite 4631-4642 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Journal of experimental botany |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Review Abiotic stress Brassicaceae Casparian strip inner cortex lignification phi thickenings root architecture mehr... |
Zusammenfassung: | © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. Phi thickenings are specialized secondary walls found in root cortical cells. Despite their widespread occurrence throughout the plant kingdom, these specialized thickenings remain poorly understood. First identified by Van Tieghem in 1871, phi thickenings are a lignified and thickened cell wall band that is deposited inside the primary wall, as a ring around the cells' radial walls. Phi thickenings can, however, display structural variations including a fine, reticulate network of wall thickenings extending laterally from the central lignified band. While phi thickenings have been proposed to mechanically strengthen roots, act as a permeability barrier to modulate solute movement, and regulate fungal interactions, these possibilities remain to be experimentally confirmed. Furthermore, since temporal and spatial development of phi thickenings varies widely between species, thickenings may perform diverse roles in different species. Phi thickenings can be induced by abiotic stresses in different species; they can, for example, be induced by heavy metals in the Zn/Cd hyperaccumulator Thlaspi caerulescens, and in a cultivar-specific manner by water stress in Brassica. This latter observation provides an experimental platform to probe phi thickening function, and to identify genetic pathways responsible for their formation. These pathways might be expected to differ from those involved in secondary wall formation in xylem, since phi thickening deposition in not linked to programmed cell death |
---|---|
Beschreibung: | Date Completed 27.07.2020 Date Revised 27.07.2020 published: Print Citation Status MEDLINE |
ISSN: | 1460-2431 |
DOI: | 10.1093/jxb/erz240 |