Model Driven Optimization of Magnetic Anisotropy of Exchange-coupled Core-Shell Ferrite Nanoparticles for Maximal Hysteretic Loss

This study provides a guide to maximizing hysteretic loss by matching the design and synthesis of superparamagnetic nanoparticles to the desired hyperthermia application. The maximal heat release from magnetic nanoparticles to the environment depends on intrinsic properties of magnetic nanoparticles...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 27(2015), 21 vom: 10. Nov., Seite 7380-7387
1. Verfasser: Zhang, Qian (VerfasserIn)
Weitere Verfasser: Castellanos-Rubio, Idoia, Munshi, Rahul, Orue, Iñaki, Pelaz, Beatriz, Gries, Katharina Ines, Parak, Wolfgang J, Del Pino, Pablo, Pralle, Arnd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:This study provides a guide to maximizing hysteretic loss by matching the design and synthesis of superparamagnetic nanoparticles to the desired hyperthermia application. The maximal heat release from magnetic nanoparticles to the environment depends on intrinsic properties of magnetic nanoparticles (e.g. size, magnetization, and magnetic anisotropy), and extrinsic properties of the applied fields (e.g. frequency, field strength). Often, the biomedical hyperthermia application limits flexibility in setting of many parameters (e.g. nanoparticle size and mobility, field strength and frequency). We show that core-shell nanoparticles combining a soft (Mn ferrite) and a hard (Co ferrite) magnetic material form a system in which the effective magnetic anisotropy can be easily tuned independently of the nanoparticle size. A theoretical framework to include the crystal anisotropy contribution of the Co ferrite phase to the nanoparticles total anisotropy is developed. The experimental results confirm that this framework predicts the hysteretic heating loss correctly when including non-linear effects in an effective susceptibility. Hence, we provide a guide on how to characterize the magnetic anisotropy of core-shell magnetic nanoparticles, model the expected heat loss and therefore, synthesize tuned nanoparticles for a particular biomedical application
Beschreibung:Date Revised 16.07.2024
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:0897-4756
DOI:10.1021/acs.chemmater.5b03261