Uniform and Variational Deep Learning for RGB-D Object Recognition and Person Re-Identification

In this paper, we propose a uniform and variational deep learning (UVDL) method for RGB-D object recognition and person re-identification. Unlike most existing object recognition and person re-identification methods, which usually use only the visual appearance information from RGB images, our metho...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 10 vom: 15. Okt., Seite 4970-4983
Auteur principal: Ren, Liangliang (Auteur)
Autres auteurs: Lu, Jiwen, Feng, Jianjiang, Zhou, Jie
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM29714104X
003 DE-627
005 20250225081918.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2915655  |2 doi 
028 5 2 |a pubmed25n0990.xml 
035 |a (DE-627)NLM29714104X 
035 |a (NLM)31095483 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Ren, Liangliang  |e verfasserin  |4 aut 
245 1 0 |a Uniform and Variational Deep Learning for RGB-D Object Recognition and Person Re-Identification 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a uniform and variational deep learning (UVDL) method for RGB-D object recognition and person re-identification. Unlike most existing object recognition and person re-identification methods, which usually use only the visual appearance information from RGB images, our method recognizes visual objects and persons with RGB-D images to exploit more reliable information such as geometric and anthropometric information that are robust to different viewpoints. Specifically, we extract the depth feature and the appearance feature from the depth and RGB images with two deep convolutional neural networks, respectively. In order to combine the depth feature and the appearance feature to exploit their relationship, we design a uniform and variational multi-modal auto-encoder at the top layer of our deep network to seek a uniform latent variable by projecting them into a common space, which contains the whole information of RGB-D images and has small intra-class variation and large inter-class variation, simultaneously. Finally, we optimize the auto-encoder layer and two deep convolutional neural networks jointly to minimize the discriminative loss and the reconstruction error. The experimental results on both RGB-D object recognition and RGB-D person re-identification are presented to show the efficiency of our proposed approach 
650 4 |a Journal Article 
700 1 |a Lu, Jiwen  |e verfasserin  |4 aut 
700 1 |a Feng, Jianjiang  |e verfasserin  |4 aut 
700 1 |a Zhou, Jie  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 10 vom: 15. Okt., Seite 4970-4983  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:28  |g year:2019  |g number:10  |g day:15  |g month:10  |g pages:4970-4983 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2915655  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 10  |b 15  |c 10  |h 4970-4983