Toward Bridging the Simulated-to-Real Gap : Benchmarking Super-Resolution on Real Data

Capturing ground truth data to benchmark super-resolution (SR) is challenging. Therefore, current quantitative studies are mainly evaluated on simulated data artificially sampled from ground truth images. We argue that such evaluations overestimate the actual performance of SR methods compared to th...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 11 vom: 01. Nov., Seite 2944-2959
1. Verfasser: Kohler, Thomas (VerfasserIn)
Weitere Verfasser: Batz, Michel, Naderi, Farzad, Kaup, Andre, Maier, Andreas, Riess, Christian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM297140981
003 DE-627
005 20231225091341.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2917037  |2 doi 
028 5 2 |a pubmed24n0990.xml 
035 |a (DE-627)NLM297140981 
035 |a (NLM)31095478 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kohler, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Toward Bridging the Simulated-to-Real Gap  |b Benchmarking Super-Resolution on Real Data 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 02.10.2020 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Capturing ground truth data to benchmark super-resolution (SR) is challenging. Therefore, current quantitative studies are mainly evaluated on simulated data artificially sampled from ground truth images. We argue that such evaluations overestimate the actual performance of SR methods compared to their behavior on real images. Toward bridging this simulated-to-real gap, we introduce the Super-Resolution Erlangen (SupER) database, the first comprehensive laboratory SR database of all-real acquisitions with pixel-wise ground truth. It consists of more than 80k images of 14 scenes combining different facets: CMOS sensor noise, real sampling at four resolution levels, nine scene motion types, two photometric conditions, and lossy video coding at five levels. As such, the database exceeds existing benchmarks by an order of magnitude in quality and quantity. This paper also benchmarks 19 popular single-image and multi-frame algorithms on our data. The benchmark comprises a quantitative study by exploiting ground truth data and qualitative evaluations in a large-scale observer study. We also rigorously investigate agreements between both evaluations from a statistical perspective. One interesting result is that top-performing methods on simulated data may be surpassed by others on real data. Our insights can spur further algorithm development, and the publicy available dataset can foster future evaluations 
650 4 |a Journal Article 
700 1 |a Batz, Michel  |e verfasserin  |4 aut 
700 1 |a Naderi, Farzad  |e verfasserin  |4 aut 
700 1 |a Kaup, Andre  |e verfasserin  |4 aut 
700 1 |a Maier, Andreas  |e verfasserin  |4 aut 
700 1 |a Riess, Christian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 11 vom: 01. Nov., Seite 2944-2959  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:11  |g day:01  |g month:11  |g pages:2944-2959 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2917037  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 11  |b 01  |c 11  |h 2944-2959