BE-CALF : Bit-Depth Enhancement by Concatenating All Level Features of DNN

There is a growing demand for monitors to provide high-quality visualization with more bits representing each rendered pixel. However, since most existing images and videos are of low bit-depth (LBD), transforming LBD images to visually pleasant high bit-depth (HBD) versions is of significant value....

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 10 vom: 16. Okt., Seite 4926-4940
1. Verfasser: Liu, Jing (VerfasserIn)
Weitere Verfasser: Sun, Wanning, Su, Yuting, Jing, Peiguang, Yang, Xiaokang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652c 4500
001 NLM297133500
003 DE-627
005 20250225081758.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2912294  |2 doi 
028 5 2 |a pubmed25n0990.xml 
035 |a (DE-627)NLM297133500 
035 |a (NLM)31094688 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Liu, Jing  |e verfasserin  |4 aut 
245 1 0 |a BE-CALF  |b Bit-Depth Enhancement by Concatenating All Level Features of DNN 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a There is a growing demand for monitors to provide high-quality visualization with more bits representing each rendered pixel. However, since most existing images and videos are of low bit-depth (LBD), transforming LBD images to visually pleasant high bit-depth (HBD) versions is of significant value. Most existing bit-depth enhancement methods generate unsatisfactory HBD images with annoying false contour artifacts or blurry details, and some algorithms are also time-consuming. To overcome these drawbacks, we propose a bit-depth enhancement framework via concatenating all level features of deep neural networks (DNNs). A novel deep learning network is proposed based on the deep convolutional variational auto-encoders (VAEs), and skip connections that concatenate every two layers are applied to pass low-level and high-level features to consequent layers, easing the gradient vanishing problem. Meanwhile, the proposed network is optimized to generate the residual between original images and its quantized ones, which performs better than recovering HBD images directly. The experimental results show that the proposed algorithm can eliminate false contour artifacts of the recovered HBD images with low time consumption, and can achieve dramatic restoration performance gains compared with state-of-the-art methods both subjectively and objectively 
650 4 |a Journal Article 
700 1 |a Sun, Wanning  |e verfasserin  |4 aut 
700 1 |a Su, Yuting  |e verfasserin  |4 aut 
700 1 |a Jing, Peiguang  |e verfasserin  |4 aut 
700 1 |a Yang, Xiaokang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 10 vom: 16. Okt., Seite 4926-4940  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnas 
773 1 8 |g volume:28  |g year:2019  |g number:10  |g day:16  |g month:10  |g pages:4926-4940 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2912294  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 10  |b 16  |c 10  |h 4926-4940