Defect-Tailoring Mediated Electron-Hole Separation in Single-Unit-Cell Bi3 O4 Br Nanosheets for Boosting Photocatalytic Hydrogen Evolution and Nitrogen Fixation

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 28 vom: 02. Juli, Seite e1807576
1. Verfasser: Di, Jun (VerfasserIn)
Weitere Verfasser: Xia, Jiexiang, Chisholm, Matthew F, Zhong, Jun, Chen, Chao, Cao, Xingzhong, Dong, Fan, Chi, Zhen, Chen, Hailong, Weng, Yu-Xiang, Xiong, Jun, Yang, Shi-Ze, Li, Huaming, Liu, Zheng, Dai, Sheng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article charge separation defect engineering electronic structure photocatalytic nitrogen fixation single-unit-cell Bi3O4Br
Beschreibung
Zusammenfassung:© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Solar photocatalysis is a potential solution to satisfying energy demand and its resulting environmental impact. However, the low electron-hole separation efficiency in semiconductors has slowed the development of this technology. The effect of defects on electron-hole separation is not always clear. A model atomically thin structure of single-unit-cell Bi3 O4 Br nanosheets with surface defects is proposed to boost photocatalytic efficiency by simultaneously promoting bulk- and surface-charge separation. Defect-rich single-unit-cell Bi3 O4 Br displays 4.9 and 30.9 times enhanced photocatalytic hydrogen evolution and nitrogen fixation activity, respectively, than bulk Bi3 O4 Br. After the preparation of single-unit-cell structure, the bismuth defects are controlled to tune the oxygen defects. Benefiting from the unique single-unit-cell architecture and defects, the local atomic arrangement and electronic structure are tuned so as to greatly increase the charge separation efficiency and subsequently boost photocatalytic activity. This strategy provides an accessible pathway for next-generation photocatalysts
Beschreibung:Date Revised 01.10.2020
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1521-4095
DOI:10.1002/adma.201807576