Bioinspired Viscoelastic Capsules : Delivery Vehicles and Beyond
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Publié dans: | Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 27 vom: 01. Juli, Seite e1808233 |
---|---|
Auteur principal: | |
Autres auteurs: | , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2019
|
Accès à la collection: | Advanced materials (Deerfield Beach, Fla.) |
Sujets: | Journal Article 3D printing capsules catechols surfactants Capsules Catechols Coordination Complexes Cross-Linking Reagents Fluorocarbons plus... |
Résumé: | © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. Microcapsules are often used as individually dispersed carriers of active ingredients to prolong their shelf life or to protect premature reactions with substances contained in the surrounding. This study goes beyond this application and employs microcapsules as principal building blocks of macroscopic 3D materials with well-defined granular structures. To achieve this goal and inspired by nature, capsules are fabricated from block-copolymer surfactants that are functionalized with catechols, a metal-coordinating motive. These surfactants self-assemble at the surface of emulsion drops where they are ionically cross-linked to form viscoelastic capsules that display a low permeability even toward small encapsulants. It is demonstrated that the combination of the mechanical strength, flexibility, and stickiness of the capsules enables their additive manufacturing into macroscopic granular structures. Thereby, they open up new opportunities for 3D printing of soft, self-healing materials composed of individual compartments that can be functionalized with different types of spatially separated reagents |
---|---|
Description: | Date Completed 18.09.2019 Date Revised 30.09.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1521-4095 |
DOI: | 10.1002/adma.201808233 |