Imaging Catalytic Activation of CO2 on Cu2O (110) : A First-Principles Study

Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO2 reduction. While photoreduction of CO2 is promising, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu2O is a promising next-...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Chemistry of materials : a publication of the American Chemical Society. - 1998. - 30(2018) vom: 19.
1. Verfasser: Li, Liang (VerfasserIn)
Weitere Verfasser: Zhang, Rui, Vinson, John, Shirley, Eric L, Greeley, Jeffrey P, Guest, Jeffrey R, Chan, Maria K Y
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Chemistry of materials : a publication of the American Chemical Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM296994235
003 DE-627
005 20231225091032.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.chemmater.7b04803  |2 doi 
028 5 2 |a pubmed24n0989.xml 
035 |a (DE-627)NLM296994235 
035 |a (NLM)31080315 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Liang  |e verfasserin  |4 aut 
245 1 0 |a Imaging Catalytic Activation of CO2 on Cu2O (110)  |b A First-Principles Study 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 25.02.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Balancing global energy needs against increasing greenhouse gas emissions requires new methods for efficient CO2 reduction. While photoreduction of CO2 is promising, the rational design of photocatalysts hinges on precise characterization of the surface catalytic reactions. Cu2O is a promising next-generation photocatalyst, but the atomic-scale description of the interaction between CO2 and the Cu2O surface is largely unknown, and detailed experimental measures are lacking. In this study, density-functional theory (DFT) calculations have been performed to identify the Cu2O (110) surface stoichiometry that favors CO2 reduction. To facilitate interpretation of scanning tunneling microscopy (STM) and X-ray absorption near-edge structures (XANES) measurements, which are useful for characterizing catalytic reactions, we present simulations based on DFT-derived surface morphologies with various adsorbate types. STM and XANES simulations were performed using the Tersoff-Hamann approximation and Bethe-Salpeter equation (BSE) approach, respectively. The results provide guidance for observation of CO2 reduction reaction on, and rational surface engineering of, Cu2O (110). They also demonstrate the effectiveness of computational image and spectroscopy modeling as a predictive tool for surface catalysis characterization 
650 4 |a Journal Article 
700 1 |a Zhang, Rui  |e verfasserin  |4 aut 
700 1 |a Vinson, John  |e verfasserin  |4 aut 
700 1 |a Shirley, Eric L  |e verfasserin  |4 aut 
700 1 |a Greeley, Jeffrey P  |e verfasserin  |4 aut 
700 1 |a Guest, Jeffrey R  |e verfasserin  |4 aut 
700 1 |a Chan, Maria K Y  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Chemistry of materials : a publication of the American Chemical Society  |d 1998  |g 30(2018) vom: 19.  |w (DE-627)NLM098194763  |x 0897-4756  |7 nnns 
773 1 8 |g volume:30  |g year:2018  |g day:19 
856 4 0 |u http://dx.doi.org/10.1021/acs.chemmater.7b04803  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_11 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 30  |j 2018  |b 19