Pyrolysis of sewage sludge by electromagnetic induction : Biochar properties and application in adsorption removal of Pb(II), Cd(II) from aqueous solution

Copyright © 2019 Elsevier Ltd. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Waste management (New York, N.Y.). - 1999. - 89(2019) vom: 15. Apr., Seite 48-56
1. Verfasser: Xue, Yongjie (VerfasserIn)
Weitere Verfasser: Wang, Chen, Hu, Zhenhua, Zhou, Yi, Xiao, Yue, Wang, Teng
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Waste management (New York, N.Y.)
Schlagworte:Journal Article Adsorption Biochar Electromagnetic induction Heat conduction Sewage sludge pyrolysis Sewage biochar Cadmium 00BH33GNGH mehr... Charcoal 16291-96-6 Lead 2P299V784P
Beschreibung
Zusammenfassung:Copyright © 2019 Elsevier Ltd. All rights reserved.
Pyrolysis of sewage sludge was studied by electromagnetic induction (EMI) heating method and in a laboratory-scale reaction installation. Basic properties and adsorption of heavy metals Pb and Cd on biochar from EMI pyrolysis of sewage sludge was investigated. Experimental results indicate that EMI pyrolysis temperature was determined by the relationship between working voltage of EMI device and induction media. Biochar yield rate ranged from 89.7% to 51.2% at temperature from 300 to 600 °C. Elements, surface characterizations and micromorphology, thermogravimetric properties as well as gas evolution changed with increasing pyrolysis temperature. Hydroxyl groups were decomposed during EMI pyrolysis process. Heavy metals in biochar was leached through TCLP and higher leachability was obtained in biochar pyrolyzed at 400 °C compared to other biochar products. A higher adsorption removal efficiency of Pb and Cd was obtained by EMI pyrolyzed biochar. Langmuir and pseudo-first-order models were used for description of adsorption isotherm and kinetics
Beschreibung:Date Completed 12.09.2019
Date Revised 12.09.2019
published: Print-Electronic
Citation Status MEDLINE
ISSN:1879-2456
DOI:10.1016/j.wasman.2019.03.047