Show, Attend, and Translate : Unsupervised Image Translation With Self-Regularization and Attention

Image translation between two domains is a class of problems aiming to learn mapping from an input image in the source domain to an output image in the target domain. It has been applied to numerous applications, such as data augmentation, domain adaptation, and unsupervised training. When paired tr...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 10 vom: 08. Okt., Seite 4845-4856
1. Verfasser: Yang, Chao (VerfasserIn)
Weitere Verfasser: Kim, Taehwan, Wang, Ruizhe, Peng, Hao, Kuo, C-C Jay
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM296902969
003 DE-627
005 20231225090834.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2914583  |2 doi 
028 5 2 |a pubmed24n0989.xml 
035 |a (DE-627)NLM296902969 
035 |a (NLM)31071042 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Yang, Chao  |e verfasserin  |4 aut 
245 1 0 |a Show, Attend, and Translate  |b Unsupervised Image Translation With Self-Regularization and Attention 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Image translation between two domains is a class of problems aiming to learn mapping from an input image in the source domain to an output image in the target domain. It has been applied to numerous applications, such as data augmentation, domain adaptation, and unsupervised training. When paired training data is not accessible, image translation becomes an ill-posed problem. We constrain the problem with the assumption that the translated image needs to be perceptually similar to the original image and also appears to be drawn from the new domain, and propose a simple yet effective image translation model consisting of a single generator trained with a self-regularization term and an adversarial term. We further notice that the existing image translation techniques are agnostic to the subjects of interest and often introduce unwanted changes or artifacts to the input. Thus, we propose to add an attention module to predict an attention map to guide the image translation process. The module learns to attend to key parts of the image while keeping everything else unaltered, essentially avoiding undesired artifacts or changes. Extensive experiments and evaluations show that our model while being simpler, achieves significantly better performance than existing image translation methods 
650 4 |a Journal Article 
700 1 |a Kim, Taehwan  |e verfasserin  |4 aut 
700 1 |a Wang, Ruizhe  |e verfasserin  |4 aut 
700 1 |a Peng, Hao  |e verfasserin  |4 aut 
700 1 |a Kuo, C-C Jay  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 10 vom: 08. Okt., Seite 4845-4856  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:10  |g day:08  |g month:10  |g pages:4845-4856 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2914583  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 10  |b 08  |c 10  |h 4845-4856