2D Partial Unwinding-A Novel Non-Linear Phase Decomposition of Images

This paper aims at proposing a novel 2D non-linear phase decomposition of images, which performs the image processing tasks better than the traditional Fourier transformation (linear phase decomposition), but further, it has additional mathematical properties allowing more effective image analysis,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 10 vom: 08. Okt., Seite 4762-4773
1. Verfasser: Li, Yanting (VerfasserIn)
Weitere Verfasser: Zhang, Liming, Qian, Tao
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM296902918
003 DE-627
005 20231225090834.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2914000  |2 doi 
028 5 2 |a pubmed24n0989.xml 
035 |a (DE-627)NLM296902918 
035 |a (NLM)31071037 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Yanting  |e verfasserin  |4 aut 
245 1 0 |a 2D Partial Unwinding-A Novel Non-Linear Phase Decomposition of Images 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 09.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This paper aims at proposing a novel 2D non-linear phase decomposition of images, which performs the image processing tasks better than the traditional Fourier transformation (linear phase decomposition), but further, it has additional mathematical properties allowing more effective image analysis, including adaptive decomposition components and positive instantaneous phase derivatives. 1D unwinding Blaschke decomposition has recently been proposed and studied. Through factorization it expresses arbitrary 1D signal into an infinite linear combination of Blaschke products. It offers fast converging positive frequency decomposition in the form of rational approximation. However, in the multi-dimensional cases, the usual factorization mechanism does not work. As a consequence, there is no genuine unwinding decomposition for multi-dimensions. In this paper, a 2D partial unwinding decomposition based on algebraic transforms reducing multi-dimensions to the 1D case is proposed and analyzed. The result shows that the fast convergence offers efficient image reconstruction. The tensor type decomposing terms are mutually orthogonal, giving rise to 2D positive frequency decomposition. The comparison results show that the proposed method outperforms the standard greedy algorithm and the most commonly used methods in the Fourier category. An application in watermarking is presented to demonstrate its potential in applications 
650 4 |a Journal Article 
700 1 |a Zhang, Liming  |e verfasserin  |4 aut 
700 1 |a Qian, Tao  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 10 vom: 08. Okt., Seite 4762-4773  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:10  |g day:08  |g month:10  |g pages:4762-4773 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2914000  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 10  |b 08  |c 10  |h 4762-4773