Face Hallucination by Attentive Sequence Optimization with Reinforcement Learning

Face hallucination is a domain-specific super-resolution problem that aims to generate a high-resolution (HR) face image from a low-resolution (LR) input. In contrast to the existing patch-wise super-resolution models that divide a face image into regular patches and independently apply LR to HR map...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 11 vom: 07. Nov., Seite 2809-2824
1. Verfasser: Shi, Yukai (VerfasserIn)
Weitere Verfasser: Li, Guanbin, Cao, Qingxing, Wang, Keze, Lin, Liang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM29690273X
003 DE-627
005 20250225073522.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2915301  |2 doi 
028 5 2 |a pubmed25n0989.xml 
035 |a (DE-627)NLM29690273X 
035 |a (NLM)31071019 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shi, Yukai  |e verfasserin  |4 aut 
245 1 0 |a Face Hallucination by Attentive Sequence Optimization with Reinforcement Learning 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.07.2021 
500 |a Date Revised 16.07.2021 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Face hallucination is a domain-specific super-resolution problem that aims to generate a high-resolution (HR) face image from a low-resolution (LR) input. In contrast to the existing patch-wise super-resolution models that divide a face image into regular patches and independently apply LR to HR mapping to each patch, we implement deep reinforcement learning and develop a novel attention-aware face hallucination (Attention-FH) framework, which recurrently learns to attend a sequence of patches and performs facial part enhancement by fully exploiting the global interdependency of the image. Specifically, our proposed framework incorporates two components: a recurrent policy network for dynamically specifying a new attended region at each time step based on the status of the super-resolved image and the past attended region sequence, and a local enhancement network for selected patch hallucination and global state updating. The Attention-FH model jointly learns the recurrent policy network and local enhancement network through maximizing a long-term reward that reflects the hallucination result with respect to the whole HR image. Extensive experiments demonstrate that our Attention-FH significantly outperforms the state-of-the-art methods on in-the-wild face images with large pose and illumination variations 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Li, Guanbin  |e verfasserin  |4 aut 
700 1 |a Cao, Qingxing  |e verfasserin  |4 aut 
700 1 |a Wang, Keze  |e verfasserin  |4 aut 
700 1 |a Lin, Liang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 11 vom: 07. Nov., Seite 2809-2824  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:11  |g day:07  |g month:11  |g pages:2809-2824 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2915301  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 11  |b 07  |c 11  |h 2809-2824