Multi-View Linear Discriminant Analysis Network

In many real-world applications, an object can be described from multiple views or styles, leading to the emerging multi-view analysis. To eliminate the complicated (usually highly nonlinear) view discrepancy for favorable cross-view recognition and retrieval, we propose a Multi-view Linear Discrimi...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 28(2019), 11 vom: 02. Nov., Seite 5352-5365
1. Verfasser: Hu, Peng (VerfasserIn)
Weitere Verfasser: Peng, Dezhong, Sang, Yongsheng, Xiang, Yong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM296789208
003 DE-627
005 20231225090610.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2913511  |2 doi 
028 5 2 |a pubmed24n0989.xml 
035 |a (DE-627)NLM296789208 
035 |a (NLM)31059440 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hu, Peng  |e verfasserin  |4 aut 
245 1 0 |a Multi-View Linear Discriminant Analysis Network 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.08.2019 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In many real-world applications, an object can be described from multiple views or styles, leading to the emerging multi-view analysis. To eliminate the complicated (usually highly nonlinear) view discrepancy for favorable cross-view recognition and retrieval, we propose a Multi-view Linear Discriminant Analysis Network (MvLDAN) by seeking a nonlinear discriminant and view-invariant representation shared among multiple views. Unlike existing multi-view methods which directly learn a common space to reduce the view gap, our MvLDAN employs multiple feedforward neural networks (one for each view) and a novel eigenvalue-based multi-view objective function to encapsulate as much discriminative variance as possible into all the available common feature dimensions. With the proposed objective function, the MvLDAN could produce representations possessing: 1) low variance within the same class regardless of view discrepancy, 2) high variance between different classes regardless of view discrepancy, and 3) high covariance between any two views. In brief, in the learned multi-view space, the obtained deep features can be projected into a latent common space in which the samples from the same class are as close to each other as possible (even though they are from different views), and the samples from different classes are as far from each other as possible (even though they are from the same view). The effectiveness of the proposed method is verified by extensive experiments carried out on five databases, in comparison with the 19 state-of-the-art approaches 
650 4 |a Journal Article 
700 1 |a Peng, Dezhong  |e verfasserin  |4 aut 
700 1 |a Sang, Yongsheng  |e verfasserin  |4 aut 
700 1 |a Xiang, Yong  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 28(2019), 11 vom: 02. Nov., Seite 5352-5365  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:28  |g year:2019  |g number:11  |g day:02  |g month:11  |g pages:5352-5365 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2913511  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 28  |j 2019  |e 11  |b 02  |c 11  |h 5352-5365