Hashing with Mutual Information
Binary vector embeddings enable fast nearest neighbor retrieval in large databases of high-dimensional objects, and play an important role in many practical applications, such as image and video retrieval. We study the problem of learning binary vector embeddings under a supervised setting, also kno...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 41(2019), 10 vom: 02. Okt., Seite 2424-2437 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article |
Zusammenfassung: | Binary vector embeddings enable fast nearest neighbor retrieval in large databases of high-dimensional objects, and play an important role in many practical applications, such as image and video retrieval. We study the problem of learning binary vector embeddings under a supervised setting, also known as hashing. We propose a novel supervised hashing method based on optimizing an information-theoretic quantity, mutual information. We show that optimizing mutual information can reduce ambiguity in the induced neighborhood structure in the learned Hamming space, which is essential in obtaining high retrieval performance. To this end, we optimize mutual information in deep neural networks with minibatch stochastic gradient descent, with a formulation that maximally and efficiently utilizes available supervision. Experiments on four image retrieval benchmarks, including ImageNet, confirm the effectiveness of our method in learning high-quality binary embeddings for nearest neighbor retrieval |
---|---|
Beschreibung: | Date Revised 23.09.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2019.2914897 |