Discrete Multi-Graph Clustering

Spectral clustering plays a significant role in applications that rely on multi-view data due to its well-defined mathematical framework and excellent performance on arbitrarily-shaped clusters. Unfortunately, directly optimizing the spectral clustering inevitably results in an NP-hard problem due t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 30. Apr.
1. Verfasser: Luo, Minnan (VerfasserIn)
Weitere Verfasser: Yan, Caixia, Zheng, Qinghua, Chang, Xiaojun, Chen, Ling, Nie, Feiping
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM296760013
003 DE-627
005 20240229162209.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2913081  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM296760013 
035 |a (NLM)31056498 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Luo, Minnan  |e verfasserin  |4 aut 
245 1 0 |a Discrete Multi-Graph Clustering 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Spectral clustering plays a significant role in applications that rely on multi-view data due to its well-defined mathematical framework and excellent performance on arbitrarily-shaped clusters. Unfortunately, directly optimizing the spectral clustering inevitably results in an NP-hard problem due to the discrete constraints on the clustering labels. Hence, conventional approaches intuitively include a relax-and-discretize strategy to approximate the original solution. However, there are no principles in this strategy that prevent the possibility of information loss between each stage of the process. This uncertainty is aggravated when a procedure of heterogeneous features fusion has to be included in multi-view spectral clustering. In this paper, we avoid an NP-hard optimization problem and develop a general framework for multi-view discrete graph clustering by directly learning a consensus partition across multiple views, instead of using the relax-and-discretize strategy. An effective re-weighting optimization algorithm is exploited to solve the proposed challenging problem. Further, we provide a theoretical analysis of the model's convergence properties and computational complexity for the proposed algorithm. Extensive experiments on several benchmark datasets verify the effectiveness and superiority of the proposed algorithm on clustering and image segmentation tasks 
650 4 |a Journal Article 
700 1 |a Yan, Caixia  |e verfasserin  |4 aut 
700 1 |a Zheng, Qinghua  |e verfasserin  |4 aut 
700 1 |a Chang, Xiaojun  |e verfasserin  |4 aut 
700 1 |a Chen, Ling  |e verfasserin  |4 aut 
700 1 |a Nie, Feiping  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 30. Apr.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:30  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2913081  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 30  |c 04