Can We See More? Joint Frontalization and Hallucination of Unaligned Tiny Faces
In popular TV programs (such as CSI), a very low-resolution face image of a person, who is not even looking at the camera in many cases, is digitally super-resolved to a degree that suddenly the person's identity is made visible and recognizable. Of course, we suspect that this is merely a cine...
Veröffentlicht in: | IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 9 vom: 14. Sept., Seite 2148-2164 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | IEEE transactions on pattern analysis and machine intelligence |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
Zusammenfassung: | In popular TV programs (such as CSI), a very low-resolution face image of a person, who is not even looking at the camera in many cases, is digitally super-resolved to a degree that suddenly the person's identity is made visible and recognizable. Of course, we suspect that this is merely a cinematographic special effect and such a magical transformation of a single image is not technically possible. Or, is it? In this paper, we push the boundaries of super-resolving (hallucinating to be more accurate) a tiny, non-frontal face image to understand how much of this is possible by leveraging the availability of large datasets and deep networks. To this end, we introduce a novel Transformative Adversarial Neural Network (TANN) to jointly frontalize very-low resolution (i.e., 16 × 16 pixels) out-of-plane rotated face images (including profile views) and aggressively super-resolve them (8×), regardless of their original poses and without using any 3D information. TANN is composed of two components: a transformative upsampling network which embodies encoding, spatial transformation and deconvolutional layers, and a discriminative network that enforces the generated high-resolution frontal faces to lie on the same manifold as real frontal face images. We evaluate our method on a large set of synthesized non-frontal face images to assess its reconstruction performance. Extensive experiments demonstrate that TANN generates both qualitatively and quantitatively superior results achieving over 4 dB improvement over the state-of-the-art |
---|---|
Beschreibung: | Date Completed 16.02.2021 Date Revised 16.02.2021 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1939-3539 |
DOI: | 10.1109/TPAMI.2019.2914039 |