Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants

© The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com.

Détails bibliographiques
Publié dans:Journal of experimental botany. - 1985. - 70(2019), 16 vom: 19. Aug., Seite 4183-4196
Auteur principal: Courbet, Galatéa (Auteur)
Autres auteurs: Gallardo, Karine, Vigani, Gianpiero, Brunel-Muguet, Sophie, Trouverie, Jacques, Salon, Christophe, Ourry, Alain
Format: Article en ligne
Langue:English
Publié: 2019
Accès à la collection:Journal of experimental botany
Sujets:Journal Article Review Chlorine copper ionome ionomic signature iron molybdenum selenium sulfur plus... Minerals Sulfur 70FD1KFU70
LEADER 01000caa a22002652 4500
001 NLM296751154
003 DE-627
005 20250225070923.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1093/jxb/erz214  |2 doi 
028 5 2 |a pubmed25n0989.xml 
035 |a (DE-627)NLM296751154 
035 |a (NLM)31055598 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Courbet, Galatéa  |e verfasserin  |4 aut 
245 1 0 |a Disentangling the complexity and diversity of crosstalk between sulfur and other mineral nutrients in cultivated plants 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.07.2020 
500 |a Date Revised 16.07.2020 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a © The Author(s) 2019. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissionsoup.com. 
520 |a A complete understanding of ionome homeostasis requires a thorough investigation of the dynamics of the nutrient networks in plants. This review focuses on the complexity of interactions occurring between S and other nutrients, and these are addressed at the level of the whole plant, the individual tissues, and the cellular compartments. With regards to macronutrients, S deficiency mainly acts by reducing plant growth, which in turn restricts the root uptake of, for example, N, K, and Mg. Conversely, deficiencies in N, K, or Mg reduce uptake of S. TOR (target of rapamycin) protein kinase, whose involvement in the co-regulation of C/N and S metabolism has recently been unravelled, provides a clue to understanding the links between S and plant growth. In legumes, the original crosstalk between N and S can be found at the level of nodules, which show high requirements for S, and hence specifically express a number of sulfate transporters. With regards to micronutrients, except for Fe, their uptake can be increased under S deficiency through various mechanisms. One of these results from the broad specificity of root sulfate transporters that are up-regulated during S deficiency, which can also take up some molybdate and selenate. A second mechanism is linked to the large accumulation of sulfate in the leaf vacuoles, with its reduced osmotic contribution under S deficiency being compensated for by an increase in Cl uptake and accumulation. A third group of broader mechanisms that can explain at least some of the interactions between S and micronutrients concerns metabolic networks where several nutrients are essential, such as the synthesis of the Mo co-factor needed by some essential enzymes, which requires S, Fe, Zn and Cu for its synthesis, and the synthesis and regulation of Fe-S clusters. Finally, we briefly review recent developments in the modelling of S responses in crops (allocation amongst plant parts and distribution of mineral versus organic forms) in order to provide perspectives on prediction-based approaches that take into account the interactions with other minerals such as N 
650 4 |a Journal Article 
650 4 |a Review 
650 4 |a Chlorine 
650 4 |a copper 
650 4 |a ionome 
650 4 |a ionomic signature 
650 4 |a iron 
650 4 |a molybdenum 
650 4 |a selenium 
650 4 |a sulfur 
650 7 |a Minerals  |2 NLM 
650 7 |a Sulfur  |2 NLM 
650 7 |a 70FD1KFU70  |2 NLM 
700 1 |a Gallardo, Karine  |e verfasserin  |4 aut 
700 1 |a Vigani, Gianpiero  |e verfasserin  |4 aut 
700 1 |a Brunel-Muguet, Sophie  |e verfasserin  |4 aut 
700 1 |a Trouverie, Jacques  |e verfasserin  |4 aut 
700 1 |a Salon, Christophe  |e verfasserin  |4 aut 
700 1 |a Ourry, Alain  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of experimental botany  |d 1985  |g 70(2019), 16 vom: 19. Aug., Seite 4183-4196  |w (DE-627)NLM098182706  |x 1460-2431  |7 nnns 
773 1 8 |g volume:70  |g year:2019  |g number:16  |g day:19  |g month:08  |g pages:4183-4196 
856 4 0 |u http://dx.doi.org/10.1093/jxb/erz214  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 70  |j 2019  |e 16  |b 19  |c 08  |h 4183-4196