Magnetoelectrically Driven Catalytic Degradation of Organics

© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Deerfield Beach, Fla.). - 1998. - 31(2019), 28 vom: 15. Juli, Seite e1901378
1. Verfasser: Mushtaq, Fajer (VerfasserIn)
Weitere Verfasser: Chen, Xiangzhong, Torlakcik, Harun, Steuer, Christian, Hoop, Marcus, Siringil, Erdem Can, Marti, Xavi, Limburg, Gregory, Stipp, Patrick, Nelson, Bradley J, Pané, Salvador
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Advanced materials (Deerfield Beach, Fla.)
Schlagworte:Journal Article bismuth ferrite catalysis degradation of organics magnetoelectric multiferroic
LEADER 01000naa a22002652 4500
001 NLM296649562
003 DE-627
005 20231225090307.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1002/adma.201901378  |2 doi 
028 5 2 |a pubmed24n0988.xml 
035 |a (DE-627)NLM296649562 
035 |a (NLM)31045284 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Mushtaq, Fajer  |e verfasserin  |4 aut 
245 1 0 |a Magnetoelectrically Driven Catalytic Degradation of Organics 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 01.11.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 
520 |a Here, the catalytic degradation of organic compounds is reported by exploiting the magnetoelectric nature of cobalt ferrite-bismuth ferrite (CFO-BFO) core-shell nanoparticles. The combination of magnetostrictive CFO with multiferroic BFO gives rise to a magnetoelectric engine that purifies water under wireless magnetic fields via advanced oxidation processes, without involvement of any sacrificial molecules or cocatalysts. Magnetostrictive CoFe2 O4 nanoparticles are fabricated using hydrothermal synthesis, followed by sol-gel synthesis to create the multiferroic BiFeO3 shell. Theoretical modeling is performed to study the magnetic-field-induced polarization on the surface of magnetoelectric nanoparticles. The results obtained from these simulations are consistent with experimental findings of the piezoforce microscopy analysis, where changes in piezoresponse of the nanoparticles under magnetic fields are observed. Next, the magnetoelectric-effect-induced catalytic degradation of organic pollutants is investigated under AC magnetic fields, and 97% removal efficiency for synthetic dyes and over 85% removal efficiency for routinely used pharmaceuticals are obtained. Additionally, trapping experiments are performed to elucidate the mechanism behind the magnetic-field-induced catalytic degradation of organic pollutants by using scavengers for each of the reactive species. The results indicate that hydroxyl and superoxide radicals are the main reactive species in the magnetoelectrically induced catalytic degradation of organic compounds 
650 4 |a Journal Article 
650 4 |a bismuth ferrite 
650 4 |a catalysis 
650 4 |a degradation of organics 
650 4 |a magnetoelectric 
650 4 |a multiferroic 
700 1 |a Chen, Xiangzhong  |e verfasserin  |4 aut 
700 1 |a Torlakcik, Harun  |e verfasserin  |4 aut 
700 1 |a Steuer, Christian  |e verfasserin  |4 aut 
700 1 |a Hoop, Marcus  |e verfasserin  |4 aut 
700 1 |a Siringil, Erdem Can  |e verfasserin  |4 aut 
700 1 |a Marti, Xavi  |e verfasserin  |4 aut 
700 1 |a Limburg, Gregory  |e verfasserin  |4 aut 
700 1 |a Stipp, Patrick  |e verfasserin  |4 aut 
700 1 |a Nelson, Bradley J  |e verfasserin  |4 aut 
700 1 |a Pané, Salvador  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Advanced materials (Deerfield Beach, Fla.)  |d 1998  |g 31(2019), 28 vom: 15. Juli, Seite e1901378  |w (DE-627)NLM098206397  |x 1521-4095  |7 nnns 
773 1 8 |g volume:31  |g year:2019  |g number:28  |g day:15  |g month:07  |g pages:e1901378 
856 4 0 |u http://dx.doi.org/10.1002/adma.201901378  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 31  |j 2019  |e 28  |b 15  |c 07  |h e1901378