Cross-Linked Reverse Vesicle as a General and Effective Vehicle for Hydrophobic Drugs

It is well-known that vesicles serve as an excellent delivery platform for hydrophilic drugs. However, there is still a lack of a general and effective platform for hydrophobic drug loading. We herein disclose that water-soluble cross-linked reverse vesicles (cRVs) constructed from anionic surfactan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 35(2019), 20 vom: 21. Mai, Seite 6676-6682
1. Verfasser: Zhang, Jing (VerfasserIn)
Weitere Verfasser: Li, Chuanqi, Liao, Chunyan, Zhao, Puchen, Yu, Yunlong, Zhang, Shiyong
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Antineoplastic Agents Drug Carriers Surface-Active Agents
Beschreibung
Zusammenfassung:It is well-known that vesicles serve as an excellent delivery platform for hydrophilic drugs. However, there is still a lack of a general and effective platform for hydrophobic drug loading. We herein disclose that water-soluble cross-linked reverse vesicles (cRVs) constructed from anionic surfactant 1, a counterpart of normal vesicles, would be excellent vehicles for hydrophobic drugs, the drug loading content (DLC) for which arrived up to 21.1%, 19.8%, and 25.8%, respectively, for three anticancer drugs, paclitaxel, camptothecin, and carmofur. This represents a general drug carrier with high drug loading content for various hydrophobic drugs without the assistance of other external forces. In addition to drug loading superiority, the cRVs were also characterized by robust stability, specific stimulus response, easy postfunctionalization, and good biocompatibility and thus are promising candidates for drug delivery systems
Beschreibung:Date Completed 06.08.2020
Date Revised 06.08.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.9b00405