The synergistic effect of biophoto anode for the enhancement of current generation and degradation
The demand for removal of refractory organic pollutants limits the application of microbial fuel cells. In this study, the synergistic effects of bioelectrochemical and photocatalysis methods were captured by constructing a biophoto anode from a combination of WO3/TiO2 and carbon felt. This biophoto...
Veröffentlicht in: | Environmental technology. - 1993. - 41(2020), 26 vom: 02. Nov., Seite 3420-3430 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2020
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Microbial fuel cell aniline degradation photocatalysis synergistic effect |
Zusammenfassung: | The demand for removal of refractory organic pollutants limits the application of microbial fuel cells. In this study, the synergistic effects of bioelectrochemical and photocatalysis methods were captured by constructing a biophoto anode from a combination of WO3/TiO2 and carbon felt. This biophoto electrode was able to decrease the aniline concentration from 63.3 ± 6.2 to 9.3 ± 5.5 mg/L. The structure of the benzene ring was broken through strong oxidation by photocatalysis. Electrochemical analysis showed that photocatalysis also enhanced the extracellular electron transfer of microorganisms and reduced the resistance of the anode from 136.9 Ω to 69.9 Ω. In addition, the maximum current output increased by 28.5% under the composite biophoto electrode. Further analysis of the microbial community indicated that the biophoto electrode promoted the enrichment of Geobacter in the anode. This biophoto electrode provided a method for overcoming the disadvantages of anaerobic degradation of refractory organics |
---|---|
Beschreibung: | Date Completed 27.10.2020 Date Revised 27.10.2020 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2019.1611936 |