Hydrogen splitting by pyramidalized 13-15 donor-acceptor cryptands : A computational study
© 2019 Wiley Periodicals, Inc.
Veröffentlicht in: | Journal of computational chemistry. - 1984. - 40(2019), 21 vom: 05. Aug., Seite 1892-1901 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Journal of computational chemistry |
Schlagworte: | Journal Article DFT study Lewis acids Lewis bases cryptands hydrogen splitting |
Zusammenfassung: | © 2019 Wiley Periodicals, Inc. A series of new donor-acceptor cryptands, where pyramidalized donor (azaadamantane) and acceptor (bora/ala/adamantane) molecules are spatially oriented toward each other and linked via aromatic spacer, are constructed and computationally studied at M06-2X and ωB97X-D levels of theory. Kinetic stability of the perfluorinated bora- and ala-adamantane with respect to F migration to group 13 element is demonstrated. The effectiveness of the constructed cryptands, featuring pyramidalized perfluorinated acceptor moieties, in the heterolytic splitting of molecular hydrogen is predicted. Hydrogen splitting is highly exothermic and exergonic and is accompanied by small activation barriers. The most promising candidates for the experimental studies are identified. © 2019 Wiley Periodicals, Inc |
---|---|
Beschreibung: | Date Revised 23.07.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1096-987X |
DOI: | 10.1002/jcc.25845 |