Phase transitions in (C7 H12 N2 )2 [SnCl6 ]Cl2 ·1.5H2 O crystal, studied by NMR and infrared spectroscopy
© 2019 John Wiley & Sons, Ltd.
Veröffentlicht in: | Magnetic resonance in chemistry : MRC. - 1985. - 57(2019), 8 vom: 24. Aug., Seite 479-488 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2019
|
Zugriff auf das übergeordnete Werk: | Magnetic resonance in chemistry : MRC |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't NMR spectroscopy chlorostannate (IV) crystal structure phase transition relaxation time vibrational spectra |
Zusammenfassung: | © 2019 John Wiley & Sons, Ltd. The (C7 H12 N2 )2 [SnCl6 ]Cl2 ·1.5H2 O complex is a new member of the family of hybrid organic-inorganic perovskite compounds. It exhibits two order-disorder phase transitions with changes in the conformation of aromatic cations at the two transition temperatures 360 and 412 K. Differential scanning calorimetry, nuclear magnetic resonance (NMR), and Fourier-transform infrared (FT-IR) spectroscopy were used to investigate these phase transitions. These transition mechanisms were investigated in terms of the spin-lattice relaxation times T1 for 1 H static NMR and the chemical shifts for 13 C CP-MAS. The temperature dependence of T1(1 H) and 13 C chemical shifts are changed near TC1 and TC2 . Furthermore, the splitting for 13 C NMR signals in Phases (II) and (III) indicated a ferroelastic characteristic of the compound. In addition, FT-IR results indicate that the ordered conformational structure of aromatic cations undergoes a remarkable disorder with increasing temperature. The NMR and FT-IR studies suggest that the phase transition mechanisms are related to the reorientational motion of [C7 H12 N2 ]2+ cations as a whole. Phase transition was examined in light of the interesting optical properties of this material |
---|---|
Beschreibung: | Date Completed 17.09.2019 Date Revised 17.09.2019 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1097-458X |
DOI: | 10.1002/mrc.4878 |