Hyperviscosity-Based Stabilization for Radial Basis Function-Finite Difference (RBF-FD) Discretizations of Advection-Diffusion Equations

We present a novel hyperviscosity formulation for stabilizing RBF-FD discretizations of the advectiondiffusion equation. The amount of hyperviscosity is determined quasi-analytically for commonly-used explicit, implicit, and implicit-explicit (IMEX) time integrators by using a simple 1D semi-discret...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 372(2018) vom: 01. Nov., Seite 616-639
1. Verfasser: Shankar, Varun (VerfasserIn)
Weitere Verfasser: Fogelson, Aaron L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2018
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Radial basis function advection-diffusion high-order method hyperviscosity meshfree
LEADER 01000caa a22002652c 4500
001 NLM296315494
003 DE-627
005 20250225055710.0
007 cr uuu---uuuuu
008 231225s2018 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jcp.2018.06.036  |2 doi 
028 5 2 |a pubmed25n0987.xml 
035 |a (DE-627)NLM296315494 
035 |a (NLM)31011233 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Shankar, Varun  |e verfasserin  |4 aut 
245 1 0 |a Hyperviscosity-Based Stabilization for Radial Basis Function-Finite Difference (RBF-FD) Discretizations of Advection-Diffusion Equations 
264 1 |c 2018 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 11.10.2023 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a novel hyperviscosity formulation for stabilizing RBF-FD discretizations of the advectiondiffusion equation. The amount of hyperviscosity is determined quasi-analytically for commonly-used explicit, implicit, and implicit-explicit (IMEX) time integrators by using a simple 1D semi-discrete Von Neumann analysis. The analysis is applied to an analytical model of spurious growth in RBF-FD solutions that uses auxiliary differential operators mimicking the undesirable properties of RBF-FD differentiation matrices. The resulting hyperviscosity formulation is a generalization of existing ones in the literature, but is free of any tuning parameters and can be computed efficiently. To further improve robustness, we introduce a simple new scaling law for polynomial-augmented RBF-FD that relates the degree of polyharmonic spline (PHS) RBFs to the degree of the appended polynomial. When used in a novel ghost node formulation in conjunction with the recently-developed overlapped RBF-FD method, the resulting method is robust and free of stagnation errors. We validate the high-order convergence rates of our method on 2D and 3D test cases over a wide range of Peclet numbers (1-1000). We then use our method to solve a 3D coupled problem motivated by models of platelet aggregation and coagulation, again demonstrating high-order convergence rates 
650 4 |a Journal Article 
650 4 |a Radial basis function 
650 4 |a advection-diffusion 
650 4 |a high-order method 
650 4 |a hyperviscosity 
650 4 |a meshfree 
700 1 |a Fogelson, Aaron L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 372(2018) vom: 01. Nov., Seite 616-639  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnas 
773 1 8 |g volume:372  |g year:2018  |g day:01  |g month:11  |g pages:616-639 
856 4 0 |u http://dx.doi.org/10.1016/j.jcp.2018.06.036  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 372  |j 2018  |b 01  |c 11  |h 616-639