Investigating regionalization techniques for large-scale hydrological modelling

This work investigates regionalization techniques for large-scale model applications in the frame of a pan-European assessment of water resources covering approx. 740,000 km2 in Western Europe. Using the SWAT platform, four variants of the similarity based regionalization approach were compared. The...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of hydrology. - 1998. - 570(2019) vom: 16. März, Seite 220-235
1. Verfasser: Pagliero, Liliana (VerfasserIn)
Weitere Verfasser: Bouraoui, Fayçal, Diels, Jan, Willems, Patrick, McIntyre, Neil
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Journal of hydrology
Schlagworte:Journal Article Clustering Hydrological modelling Large-scale Regionalization SWAT Similarity
LEADER 01000naa a22002652 4500
001 NLM296276677
003 DE-627
005 20231225085504.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.jhydrol.2018.12.071  |2 doi 
028 5 2 |a pubmed24n0987.xml 
035 |a (DE-627)NLM296276677 
035 |a (NLM)31007277 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Pagliero, Liliana  |e verfasserin  |4 aut 
245 1 0 |a Investigating regionalization techniques for large-scale hydrological modelling 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 29.09.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a This work investigates regionalization techniques for large-scale model applications in the frame of a pan-European assessment of water resources covering approx. 740,000 km2 in Western Europe. Using the SWAT platform, four variants of the similarity based regionalization approach were compared. The first two involved unsupervised clustering to define hydrological regions before performing hydrological model calibration, whereas the last two involved supervised clustering after performing calibration. Similarity is defined using Partial Least Squares Regression (PLSR) analysis that identifies watershed physiographic characteristics that are most relevant for the selected hydrological response indices. The PLSR results indicate that typically available watershed characteristics such as geomorphology, land-use, climate, and soil properties describe reasonably well the average hydrological conditions but poorly the extreme events. Regionalization variants considering unsupervised clustering and supervised clustering performed similarly well when using all available information. However, results indicate that supervised clustering uses data more efficiently and may be more suitable when data are scarce. It is demonstrated that parsimonious use of available data can be achieved using both regionalization techniques. Finally, model performance consistently becomes acceptable by calibrating watersheds covering only 10% of the model domain, thus, making the calibration task affordable in terms of time and computational resources required 
650 4 |a Journal Article 
650 4 |a Clustering 
650 4 |a Hydrological modelling 
650 4 |a Large-scale 
650 4 |a Regionalization 
650 4 |a SWAT 
650 4 |a Similarity 
700 1 |a Bouraoui, Fayçal  |e verfasserin  |4 aut 
700 1 |a Diels, Jan  |e verfasserin  |4 aut 
700 1 |a Willems, Patrick  |e verfasserin  |4 aut 
700 1 |a McIntyre, Neil  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of hydrology  |d 1998  |g 570(2019) vom: 16. März, Seite 220-235  |w (DE-627)NLM098183508  |x 0022-1694  |7 nnns 
773 1 8 |g volume:570  |g year:2019  |g day:16  |g month:03  |g pages:220-235 
856 4 0 |u http://dx.doi.org/10.1016/j.jhydrol.2018.12.071  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 570  |j 2019  |b 16  |c 03  |h 220-235