A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform

Copyright © 2018 Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 282(2019) vom: 01. Mai, Seite 95-103
1. Verfasser: Hassan, Muhammad Adeel (VerfasserIn)
Weitere Verfasser: Yang, Mengjiao, Rasheed, Awais, Yang, Guijun, Reynolds, Matthew, Xia, Xianchun, Xiao, Yonggui, He, Zhonghu
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article High throughput phenotyping Multi-spectral imaging Normalized difference vegetation index Unmanned aerial vehicle
LEADER 01000caa a22002652 4500
001 NLM296240443
003 DE-627
005 20250225054550.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2018.10.022  |2 doi 
028 5 2 |a pubmed25n0987.xml 
035 |a (DE-627)NLM296240443 
035 |a (NLM)31003615 
035 |a (PII)S0168-9452(17)31020-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Hassan, Muhammad Adeel  |e verfasserin  |4 aut 
245 1 2 |a A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.05.2019 
500 |a Date Revised 09.01.2024 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2018 Elsevier B.V. All rights reserved. 
520 |a Wheat improvement programs require rapid assessment of large numbers of individual plots across multiple environments. Vegetation indices (VIs) that are mainly associated with yield and yield-related physiological traits, and rapid evaluation of canopy normalized difference vegetation index (NDVI) can assist in-season selection. Multi-spectral imagery using unmanned aerial vehicles (UAV) can readily assess the VIs traits at various crop growth stages. Thirty-two wheat cultivars and breeding lines grown in limited irrigation and full irrigation treatments were investigated to monitor NDVI across the growth cycle using a Sequoia sensor mounted on a UAV. Significant correlations ranging from R2 = 0.38 to 0.90 were observed between NDVI detected from UAV and Greenseeker (GS) during stem elongation (SE) to late grain gilling (LGF) across the treatments. UAV-NDVI also had high heritabilities at SE (h2 = 0.91), flowering (F)(h2 = 0.95), EGF (h2 = 0.79) and mid grain filling (MGF) (h2 = 0.71) under the full irrigation treatment, and at booting (B) (h2 = 0.89), EGF (h2 = 0.75) in the limited irrigation treatment. UAV-NDVI explained significant variation in grain yield (GY) at EGF (R2 = 0.86), MGF (R2 = 0.83) and LGF (R2 = 0.89) stages, and results were consistent with GS-NDVI. Higher correlations between UAV-NDVI and GY were observed under full irrigation at three different grain-filling stages (R2 = 0.40, 0.49 and 0.45) than the limited irrigation treatment (R2 = 0.08, 0.12 and 0.14) and GY was calculated to be 24.4% lower under limited irrigation conditions. Pearson correlations between UAV-NDVI and GY were also low ranging from r = 0.29 to 0.37 during grain-filling under limited irrigation but higher than GS-NDVI data. A similar pattern was observed for normalized difference red-edge (NDRE) and normalized green red difference index (NGRDI) when correlated with GY. Fresh biomass estimated at late flowering stage had significant correlations of r = 0.30 to 0.51 with UAV-NDVI at EGF. Some genotypes Nongda 211, Nongda 5181, Zhongmai 175 and Zhongmai 12 were identified as high yielding genotypes using NDVI during grain-filling. In conclusion, a multispectral sensor mounted on a UAV is a reliable high-throughput platform for NDVI measurement to predict biomass and GY and grain-filling stage seems the best period for selection 
650 4 |a Journal Article 
650 4 |a High throughput phenotyping 
650 4 |a Multi-spectral imaging 
650 4 |a Normalized difference vegetation index 
650 4 |a Unmanned aerial vehicle 
700 1 |a Yang, Mengjiao  |e verfasserin  |4 aut 
700 1 |a Rasheed, Awais  |e verfasserin  |4 aut 
700 1 |a Yang, Guijun  |e verfasserin  |4 aut 
700 1 |a Reynolds, Matthew  |e verfasserin  |4 aut 
700 1 |a Xia, Xianchun  |e verfasserin  |4 aut 
700 1 |a Xiao, Yonggui  |e verfasserin  |4 aut 
700 1 |a He, Zhonghu  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 282(2019) vom: 01. Mai, Seite 95-103  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnns 
773 1 8 |g volume:282  |g year:2019  |g day:01  |g month:05  |g pages:95-103 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2018.10.022  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 282  |j 2019  |b 01  |c 05  |h 95-103