Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding

Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant science : an international journal of experimental plant biology. - 1985. - 282(2019) vom: 01. Mai, Seite 23-39
1. Verfasser: van Eeuwijk, Fred A (VerfasserIn)
Weitere Verfasser: Bustos-Korts, Daniela, Millet, Emilie J, Boer, Martin P, Kruijer, Willem, Thompson, Addie, Malosetti, Marcos, Iwata, Hiroyoshi, Quiroz, Roberto, Kuppe, Christian, Muller, Onno, Blazakis, Konstantinos N, Yu, Kang, Tardieu, Francois, Chapman, Scott C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:Plant science : an international journal of experimental plant biology
Schlagworte:Journal Article Crop growth model Genomic prediction Genotype-by-environment-interaction Genotype-to-phenotype model Mixed model Multi-environment model Multi-trait model Phenotyping Phenotyping platform mehr... Physiology Plant breeding Prediction Reaction norm Response surface Statistical genetics
LEADER 01000naa a22002652 4500
001 NLM296240397
003 DE-627
005 20231225085416.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2018.06.018  |2 doi 
028 5 2 |a pubmed24n0987.xml 
035 |a (DE-627)NLM296240397 
035 |a (NLM)31003609 
035 |a (PII)S0168-9452(17)31154-8 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a van Eeuwijk, Fred A  |e verfasserin  |4 aut 
245 1 0 |a Modelling strategies for assessing and increasing the effectiveness of new phenotyping techniques in plant breeding 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 13.05.2019 
500 |a Date Revised 08.04.2022 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved. 
520 |a New types of phenotyping tools generate large amounts of data on many aspects of plant physiology and morphology with high spatial and temporal resolution. These new phenotyping data are potentially useful to improve understanding and prediction of complex traits, like yield, that are characterized by strong environmental context dependencies, i.e., genotype by environment interactions. For an evaluation of the utility of new phenotyping information, we will look at how this information can be incorporated in different classes of genotype-to-phenotype (G2P) models. G2P models predict phenotypic traits as functions of genotypic and environmental inputs. In the last decade, access to high-density single nucleotide polymorphism markers (SNPs) and sequence information has boosted the development of a class of G2P models called genomic prediction models that predict phenotypes from genome wide marker profiles. The challenge now is to build G2P models that incorporate simultaneously extensive genomic information alongside with new phenotypic information. Beyond the modification of existing G2P models, new G2P paradigms are required. We present candidate G2P models for the integration of genomic and new phenotyping information and illustrate their use in examples. Special attention will be given to the modelling of genotype by environment interactions. The G2P models provide a framework for model based phenotyping and the evaluation of the utility of phenotyping information in the context of breeding programs 
650 4 |a Journal Article 
650 4 |a Crop growth model 
650 4 |a Genomic prediction 
650 4 |a Genotype-by-environment-interaction 
650 4 |a Genotype-to-phenotype model 
650 4 |a Mixed model 
650 4 |a Multi-environment model 
650 4 |a Multi-trait model 
650 4 |a Phenotyping 
650 4 |a Phenotyping platform 
650 4 |a Physiology 
650 4 |a Plant breeding 
650 4 |a Prediction 
650 4 |a Reaction norm 
650 4 |a Response surface 
650 4 |a Statistical genetics 
700 1 |a Bustos-Korts, Daniela  |e verfasserin  |4 aut 
700 1 |a Millet, Emilie J  |e verfasserin  |4 aut 
700 1 |a Boer, Martin P  |e verfasserin  |4 aut 
700 1 |a Kruijer, Willem  |e verfasserin  |4 aut 
700 1 |a Thompson, Addie  |e verfasserin  |4 aut 
700 1 |a Malosetti, Marcos  |e verfasserin  |4 aut 
700 1 |a Iwata, Hiroyoshi  |e verfasserin  |4 aut 
700 1 |a Quiroz, Roberto  |e verfasserin  |4 aut 
700 1 |a Kuppe, Christian  |e verfasserin  |4 aut 
700 1 |a Muller, Onno  |e verfasserin  |4 aut 
700 1 |a Blazakis, Konstantinos N  |e verfasserin  |4 aut 
700 1 |a Yu, Kang  |e verfasserin  |4 aut 
700 1 |a Tardieu, Francois  |e verfasserin  |4 aut 
700 1 |a Chapman, Scott C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 282(2019) vom: 01. Mai, Seite 23-39  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnns 
773 1 8 |g volume:282  |g year:2019  |g day:01  |g month:05  |g pages:23-39 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2018.06.018  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 282  |j 2019  |b 01  |c 05  |h 23-39