Using a reaction-diffusion model to estimate day respiration and reassimilation of (photo)respired CO2 in leaves

© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 223(2019), 2 vom: 18. Juli, Seite 619-631
1. Verfasser: Berghuijs, Herman N C (VerfasserIn)
Weitere Verfasser: Yin, Xinyou, Ho, Q Tri, Retta, Moges A, Nicolaï, Bart M, Struik, Paul C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, Non-U.S. Gov't C3 photosynthesis mesophyll conductance photorespiration reaction-diffusion model reassimilation respiration Carbon Dioxide 142M471B3J
Beschreibung
Zusammenfassung:© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.
Methods using gas exchange measurements to estimate respiration in the light (day respiration Rd ) make implicit assumptions about reassimilation of (photo)respired CO2 ; however, this reassimilation depends on the positions of mitochondria. We used a reaction-diffusion model without making these assumptions to analyse datasets on gas exchange, chlorophyll fluorescence and anatomy for tomato leaves. We investigated how Rd values obtained by the Kok and the Yin methods are affected by these assumptions and how those by the Laisk method are affected by the positions of mitochondria. The Kok method always underestimated Rd . Estimates of Rd by the Yin method and by the reaction-diffusion model agreed only for nonphotorespiratory conditions. Both the Yin and Kok methods ignore reassimilation of (photo)respired CO2 , and thus underestimated Rd for photorespiratory conditions, but this was less so in the Yin than in the Kok method. Estimates by the Laisk method were affected by assumed positions of mitochondria. It did not work if mitochondria were in the cytosol between the plasmamembrane and the chloroplast envelope. However, mitochondria were found to be most likely between the tonoplast and chloroplasts. Our reaction-diffusion model effectively estimates Rd , enlightens the dependence of Rd estimates on reassimilation and clarifies (dis)advantages of existing methods
Beschreibung:Date Completed 02.03.2020
Date Revised 12.10.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.15857