|
|
|
|
LEADER |
01000caa a22002652 4500 |
001 |
NLM296189731 |
003 |
DE-627 |
005 |
20240229162200.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2019 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TIP.2019.2910389
|2 doi
|
028 |
5 |
2 |
|a pubmed24n1308.xml
|
035 |
|
|
|a (DE-627)NLM296189731
|
035 |
|
|
|a (NLM)30998464
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Kim, Dae Woo
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a NARROW GAP DETECTION IN MICROSCOPE IMAGES USING MARKED POINT PROCESS MODELING
|
264 |
|
1 |
|c 2019
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Revised 27.02.2024
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status Publisher
|
520 |
|
|
|a Differentiating objects separated by narrow gaps is a challenging and important task in analyzing microscopic images. These small separations provide useful information for applications that require detailed boundary information and/or an accurate particle count. We present a new approach to the modeling of these gaps based on a marked point process(MPP) framework. We propose to model narrow gaps as geometric structures called channels, and define Gibbs energies for these models. The Reversible-jump Markov chain Monte Carlo(RJMCMC) algorithm embedded with simulated annealing is used as an optimization method, and the switching kernel in an RJMCMC is newly designed to speed up the algorithm. In this paper, we also propose a method to exploit a detected channel configuration to reduce bridging channel defects in conventional segmentation algorithms. Experimental results demonstrate that the proposed channel modeling methods are successful in detecting gaps between closely adjacent objects. The results also show that the proposed interaction parameter control method improves boundary precision in the segmentation of microscopic images
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a Aguilar, Camilo
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Zhao, Huixi
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Comer, Mary L
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
|d 1992
|g (2019) vom: 16. Apr.
|w (DE-627)NLM09821456X
|x 1941-0042
|7 nnns
|
773 |
1 |
8 |
|g year:2019
|g day:16
|g month:04
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TIP.2019.2910389
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|j 2019
|b 16
|c 04
|