NARROW GAP DETECTION IN MICROSCOPE IMAGES USING MARKED POINT PROCESS MODELING

Differentiating objects separated by narrow gaps is a challenging and important task in analyzing microscopic images. These small separations provide useful information for applications that require detailed boundary information and/or an accurate particle count. We present a new approach to the mod...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - (2019) vom: 16. Apr.
1. Verfasser: Kim, Dae Woo (VerfasserIn)
Weitere Verfasser: Aguilar, Camilo, Zhao, Huixi, Comer, Mary L
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2019
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM296189731
003 DE-627
005 20240229162200.0
007 cr uuu---uuuuu
008 231225s2019 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2019.2910389  |2 doi 
028 5 2 |a pubmed24n1308.xml 
035 |a (DE-627)NLM296189731 
035 |a (NLM)30998464 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Dae Woo  |e verfasserin  |4 aut 
245 1 0 |a NARROW GAP DETECTION IN MICROSCOPE IMAGES USING MARKED POINT PROCESS MODELING 
264 1 |c 2019 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Revised 27.02.2024 
500 |a published: Print-Electronic 
500 |a Citation Status Publisher 
520 |a Differentiating objects separated by narrow gaps is a challenging and important task in analyzing microscopic images. These small separations provide useful information for applications that require detailed boundary information and/or an accurate particle count. We present a new approach to the modeling of these gaps based on a marked point process(MPP) framework. We propose to model narrow gaps as geometric structures called channels, and define Gibbs energies for these models. The Reversible-jump Markov chain Monte Carlo(RJMCMC) algorithm embedded with simulated annealing is used as an optimization method, and the switching kernel in an RJMCMC is newly designed to speed up the algorithm. In this paper, we also propose a method to exploit a detected channel configuration to reduce bridging channel defects in conventional segmentation algorithms. Experimental results demonstrate that the proposed channel modeling methods are successful in detecting gaps between closely adjacent objects. The results also show that the proposed interaction parameter control method improves boundary precision in the segmentation of microscopic images 
650 4 |a Journal Article 
700 1 |a Aguilar, Camilo  |e verfasserin  |4 aut 
700 1 |a Zhao, Huixi  |e verfasserin  |4 aut 
700 1 |a Comer, Mary L  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g (2019) vom: 16. Apr.  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g year:2019  |g day:16  |g month:04 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2019.2910389  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |j 2019  |b 16  |c 04