A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis

Facial expression analysis could be greatly improved by incorporating spatial and temporal patterns present in facial behavior, but the patterns have not yet been utilized to their full advantage. We remedy this via a novel dynamic model-an interval temporal restricted Boltzmann machine (IT-RBM) - t...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on pattern analysis and machine intelligence. - 1979. - 42(2020), 9 vom: 01. Sept., Seite 2082-2095
1. Verfasser: Wang, Shangfei (VerfasserIn)
Weitere Verfasser: Zheng, Zhuangqiang, Yin, Shi, Yang, Jiajia, Ji, Qiang
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2020
Zugriff auf das übergeordnete Werk:IEEE transactions on pattern analysis and machine intelligence
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM296189685
003 DE-627
005 20231225085312.0
007 cr uuu---uuuuu
008 231225s2020 xx |||||o 00| ||eng c
024 7 |a 10.1109/TPAMI.2019.2911937  |2 doi 
028 5 2 |a pubmed24n0987.xml 
035 |a (DE-627)NLM296189685 
035 |a (NLM)30998459 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wang, Shangfei  |e verfasserin  |4 aut 
245 1 2 |a A Novel Dynamic Model Capturing Spatial and Temporal Patterns for Facial Expression Analysis 
264 1 |c 2020 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.02.2021 
500 |a Date Revised 16.02.2021 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Facial expression analysis could be greatly improved by incorporating spatial and temporal patterns present in facial behavior, but the patterns have not yet been utilized to their full advantage. We remedy this via a novel dynamic model-an interval temporal restricted Boltzmann machine (IT-RBM) - that is able to capture both universal spatial patterns and complicated temporal patterns in facial behavior for facial expression analysis. We regard a facial expression as a multifarious activity composed of sequential or overlapping primitive facial events. Allen's interval algebra is implemented to portray these complicated temporal patterns via a two-layer Bayesian network. The nodes in the upper-most layer are representative of the primitive facial events, and the nodes in the lower layer depict the temporal relationships between those events. Our model also captures inherent universal spatial patterns via a multi-value restricted Boltzmann machine in which the visible nodes are facial events, and the connections between hidden and visible nodes model intrinsic spatial patterns. Efficient learning and inference algorithms are proposed. Experiments on posed and spontaneous expression distinction and expression recognition demonstrate that our proposed IT-RBM achieves superior performance compared to state-of-the art research due to its ability to incorporate these facial behavior patterns 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Zheng, Zhuangqiang  |e verfasserin  |4 aut 
700 1 |a Yin, Shi  |e verfasserin  |4 aut 
700 1 |a Yang, Jiajia  |e verfasserin  |4 aut 
700 1 |a Ji, Qiang  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on pattern analysis and machine intelligence  |d 1979  |g 42(2020), 9 vom: 01. Sept., Seite 2082-2095  |w (DE-627)NLM098212257  |x 1939-3539  |7 nnns 
773 1 8 |g volume:42  |g year:2020  |g number:9  |g day:01  |g month:09  |g pages:2082-2095 
856 4 0 |u http://dx.doi.org/10.1109/TPAMI.2019.2911937  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 42  |j 2020  |e 9  |b 01  |c 09  |h 2082-2095