|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM296112011 |
003 |
DE-627 |
005 |
20231225085131.0 |
007 |
cr uuu---uuuuu |
008 |
231225s2020 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1109/TPAMI.2019.2911065
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0987.xml
|
035 |
|
|
|a (DE-627)NLM296112011
|
035 |
|
|
|a (NLM)30990418
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Yeh, Mei-Chen
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Multilabel Deep Visual-Semantic Embedding
|
264 |
|
1 |
|c 2020
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 03.09.2020
|
500 |
|
|
|a Date Revised 03.09.2020
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a Inspired by the great success from deep convolutional neural networks (CNNs) for single-label visual-semantic embedding, we exploit extending these models for multilabel images. We propose a new learning paradigm for multilabel image classification, in which labels are ranked according to its relevance to the input image. In contrast to conventional CNN models that learn a latent vector representation (i.e., the image embedding vector), the developed visual model learns a mapping (i.e., a transformation matrix) from an image in an attempt to differentiate between its relevant and irrelevant labels. Despite the conceptual simplicity of our approach, the proposed model achieves state-of-the-art results on three public benchmark datasets
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
700 |
1 |
|
|a Li, Yi-Nan
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t IEEE transactions on pattern analysis and machine intelligence
|d 1979
|g 42(2020), 6 vom: 16. Juni, Seite 1530-1536
|w (DE-627)NLM098212257
|x 1939-3539
|7 nnns
|
773 |
1 |
8 |
|g volume:42
|g year:2020
|g number:6
|g day:16
|g month:06
|g pages:1530-1536
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1109/TPAMI.2019.2911065
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_350
|
951 |
|
|
|a AR
|
952 |
|
|
|d 42
|j 2020
|e 6
|b 16
|c 06
|h 1530-1536
|